
[Special examination / promo edition;please see note on page 4.]



Also by the author

Editor:
Flyposter Frenzy: Posters from the Anticopyright Network
Unnatural

Co-Editor:
README! ASCII Culture and the Revenge of Knowledge

Author:
ATM



BEHIND THE BLIP
ESSAYS ON THE
CULTURE OF SOFTWARE

MATTHEW FULLER

//AUTONOMEDIA



NOTE TO THIS EDITION:
This is an abbreviated promotional copy of Behind the Blip for
examination use only; permission is granted to copy and freely dis-
tribute this electronic file. For purchases or inquiries about this or
other Autonomedia books, please contact Ben Meyers, email
ben@autonomedia.org, or visit the web site 
www.autonomedia.org/behindtheblip.

Anti-copyright for non-commercial publication.
Copyright © 2003 Matthew Fuller otherwise.
All rights reserved.

Autonomedia
P.O.B. 568 Williamsburgh Station
Brooklyn, NY 11211-0568 USA
Phone & Fax: 718-963-2603
email: info@autonomedia.org
http://www.autonomedia.org

Book design: Dave Mandl

ISBN 1-57027-139-9

Printed in Canada



For Mandie, Leon, Milo, and Rosa





7

ACKNOWLEDGEMENTS

“A Means of Mutation” arises from work by the group I/O/D
(http://bak.spc.org/iod). Thanks to Simon Pope and Colin Green for
several years of it. “Break the Law of Information” is connected to
a project run on behalf of the group Mongrel. Thanks to Harwood,
Mervin Jarman, Richard Pierre Davis, Matsuko Yokokoji, and all
the other participants in Natural Selection. “Long, Dark Phone-In
of the Soul” was originally published in Mute. Thanks to all the
crew there. “Visceral Façades” and “It Looks Like You're Writing a
Letter” were first published in Telepolis. Thanks to Armin Medosch,
then-editor of this website. The work on Microsoft Word was sup-
ported by Norwich School of Art and Design. Thanks to Hilary
Bedder, Helen Boorman, George MacLennan, and Simon Wilmoth
for setting up a research environment sufficiently hands-off to let
me get hands on such intractable material. “The Impossibility of
Interface” was written during a sabbatical from Middlesex
University. Thanks to all staff and students in Media, Culture, and
Communications there.

All of the texts in this book have appeared in one shape or
another on the mailing list Nettime. Thanks to the moderators and
all those who make this such a useful resource. It should also be
acknowledged that this work arises from the activity of friends,
workmates, readers, users, distributors, copiers, events, discus-
sants: activity that would be endless were it nameable—thanks.

Thanks to the Autonomedia collective and to David Mandl for
engineering the book so generously and expertly.





9

CONTENTS

Behind the Blip: Software as Culture (Some Routes into
“Software Criticism,” More Ways Out) 11

Visceral Façades: Taking Matta-Clark’s Crowbar to Software 39
A Means of Mutation: Notes on I/O/D 4: The Web Stalker 51
Break the Law of Information: Notes on Search Engines and

Natural Selection 69
The Impossibility of Interface 99
The Long, Dark Phone-In of the Soul 121
It Looks Like You’re Writing a Letter: Microsoft Word 137





BEHIND THE BLIP:
SOFTWARE AS CULTURE
(SOME ROUTES INTO “SOFTWARE CRITICISM,”
MORE WAYS OUT)

SOFTWARE CRITICISM?

There are two questions which I would like to begin with. First,
what kind of critical and inventive thinking is required to take the
various movements in software forward into those areas which are
necessary if software oligopolies are to be undermined? But fur-
ther, how are we to develop the capacity for unleashing the unex-
pected upon software and the certainties which form it?

Second, what currents are emerging which demand and incor-
porate new ways of thinking about software?

One of the ways to think about this problem is to imagine it as
a series of articles from a new kind of computer magazine.1 What
would happen if writers about computers expanded their horizons
from the usual close focus on benchtests and bit-rates? What would
happen if we weren’t looking at endless articles detailing the func-
tionality of this or that new version of this or that application?
What if we could think a little more broadly—beyond the usual
instructional articles describing how to use this filter or that port?
What, for instance, would it mean to have a fully fledged “software
criticism”?

First, let’s look at what already exists. Certainly, we are not
short of examples of prior art. In terms of the academy, sociology,

11



for instance, offers: Jeannette Hofmann’s descriptions of the gen-
dering of word processor software and its patterns of use within
work;2 Paul N. Edwards’s history of the development of computer
technologies through the models of science promotable at the
height of the early cold war;3 Michael R. Curry’s formulation of a
technico-aesthetic economy of signification and ownership in geo-
graphic information systems;4 Donald MacKenzie’s work on the
political implications of floating-point-unit calculations in the
design of missile guidance systems5—the list goes on and extends
to substantial areas in ethnography and anthropology.6 Material
based around philosophy and literature includes Michael Heim’s
Electric Language7 and the contributions of Friedrich Kittler, despite
his assertions that the object of attention here does not exist.8 We
can also look to texts which come out of bookshops, but that don’t
get libraried up so much: Howard Rheingold’s Tools for Thought9

and J. David Bolter’s Turing’s Man,10 for instance. This list is cer-
tainly short, but it does continue. The creation of imaginary book-
shelves is as good a way of thinking through combinations as the
imaginary museum, and there are three areas in particular which
seem to offer elements recomposable into a more thoroughgoing
strand of thought about and with software.

HUMAN–COMPUTER INTERFACE

Human–Computer Interface (HCI) is obviously one area that
should be turned to. This is, after all, the point at which the machi-
nations of the computer are compelled to make themselves avail-
able in one way or another to a user. The way the computer makes
available such use, and the assumptions made about what possible
interactions might develop, are both fundamentally cultural.

Given this, HCI has an unusually narrow understanding of its
scope. Much of the rhetoric is about empowerment and the sover-
eignty of the user, whose “personality” shapes and dialogues with
the machine. It should be asked what model of a persona, what
“human,” is engineered by HCI. We should not settle for answers
that stray anywhere near the singalong theme-tune of “empower-
ment.” (Let us not forget that much of the methodology of HCI is
still derived from theories that led B. F. Skinner to assume that he

12 Behind the Blip



could train pigeons—in the days before Cruise—to act as primitive
guidance systems for missiles.)

It seems clear that the vast majority of research and produc-
tion in this area remains concerned with imposing functionalist
models on all those systems that cohere as the user. Perhaps given
software’s basis in boolean logic, where every action must be trans-
mogrified into a series of ons and offs held in hundreds of thou-
sands of circuits, this is inevitable at a certain level. Make no
mistake, HCI works. It is productive because it belongs to a long
line of disciplinary idealisations of the human that nevertheless
have the capacity to latch onto flesh. The mainstream of HCI is
considered here to be those largely positivist approaches which are
represented in standard formulations of the discipline such as the
Handbook of Human–Computer Interaction.11 When it comes to
arranging the most suitable combination of ergonomics and infor-
mation-design to ensure that a pilot can drop bombs or stockbro-
kers can move funds in the most efficient, information-rich, yet
graphically and emotionally uncluttered manner, HCI delivers the
goods. Reaction times—the number of interactive steps from task
identification to task execution—can be measured. The results can
be tabulated against variants of the system. The whole can be fine-
tuned, pixels shifted, operatives retrained: the loop between stim-
ulus and response tightened into a noose. This is the fatal endpoint
of the standard mode of HCI. It empowers users by modelling
them, and in doing so effects their disappearance, their incorpora-
tion into its models.

There are, of course, many “human-centred” variants on such
designs. Yet this kind of naming illustrates its fatal flaw. There is
still a model of the human—what constitutes it, how it must be
interfaced—being imposed here. Some developments in software
design have been made by acknowledging this. Alan Cooper’s12

approach to interface design works, for instance, by establishing a
number of stereotypical users of a system. They are imagined as
full “characters,” users of a system which is reworked, primarily in
terms of interface, in order to meet an aggregate of their needs. The
deliberate fiction of user identities is made visible at the design
stage in order to allow greater insight into the techno-aesthetic

Behind the Blip: Software as Culture 13



composition of the software. A small, useful step would be to make
these manufactured identities, but treat them as psycho-social open
source.13

More broadly, much could be gained by a change in the focus
of HCI. In its emphasis on perception, on narrowly applied psy-
chology, it has split the user from any context. One thing that is
compelling about software is how it contains models of involve-
ment with processes rather than simply with static elements—
think about groupware, or the way in which most previously
discrete applications have become part of wider suites of processes,
to say nothing about the inherently modular nature of Unix. What
would it mean to incorporate an explicitly wider notion of such
processes into software—to reinfuse the social, the dynamic, the
networks, the political, communality (perhaps even instead of, or
as well as, privacy)—into the contained model of the individualised
user that HCI has us marked down for?

We can see movements toward this in sociology- and psychol-
ogy-derived currents within HCI such as Participatory Design.
Here, there is a range of collaboration between users and designers
that aims to stake out a territory for certain models of what a user
becomes interfaced to. Notably, this territory can sometimes even
be defined geographically, as in the institutional, corporate, and
trade union uptake of this approach in Scandinavia. What these
approaches allow is a removal of the more or less negative precon-
ditions of the standard model of HCI that is simply applied to users
by experts. The area of Computer Supported Co-operative Work
brings some of these elements together, but largely as a way of
making them function, of turning them to account.

One tendency that is of interest here is in the proliferation of
higher-level languages and authorware. These allow for currents of
design that place value on experimentation, rather than adherence
to pre-formatted notions of functionality, to invade the conceptual
and practical space of the computer. At the same time, capacities
for invention do not belong solely to those who most often claim
them; the problem of design, of interface, must be set in wider
terms.

14 Behind the Blip



A key problem here, though, is the danger that a set of ques-
tions tend to stabilise out as particular techniques in which some-
thing gets solved. Software is a place where many energies and
formations meet. At the same time, it constantly slaps up against
its limitations, but these are limitations of its own making, formu-
lated by its own terms of composition. Software is always an
unsolved problem. We need ways of thinking into and activating
this process of becoming, rather than some “kinder” or more “cre-
ative” design.

PROGRAMMERS’ SELF-ACCOUNTS

Another pre-existing area that offers insights for an understanding
of software as culture is the tradition of accounts of their work by
programmers. Key texts are “Perl, the First Postmodern Computer
Language,”14 by Larry Wall, and Close to the Machine,15 by Ellen
Ullman. Both of these in their own ways document the interrela-
tion of programming with other formations—cultural, social, aes-
thetic. These are drives that are built into and compose software
rather than use it as a neutral tool.

These accounts of programming are somewhat at odds with
the idealist tendencies in computing. In the recent film based on
Robert Harris’s novel Enigma, one of the characters makes the
claim most succinctly: “With numbers, truth and beauty are the
same thing.” Such statements are the pop-science version of the
attractions of so-called “pure” mathematics. It is also the vision of
numbers that most often finds its way to the big screen. (Think also
of the film Pi, where a cute crazy loner struggles for a glimpse of
the numerical meta-reality.) But more crucially, they are a direct
route to the cultural backbone of classical idealism. There are har-
monious relations between forms of every kind that can be under-
stood through the relations between numbers. The closer they are
to achieving purity of form, the more beautiful they become. There
is an endpoint to this passage to beauty which is absolute beauty.
Access to and understanding of this beauty is allowed only to those
souls that are themselves beautiful.

The consequences of such ordering are of course clear, if only
in the brutality of their collaboration with and succour for hierar-

Behind the Blip: Software as Culture 15



chies of every kind. The kitschier end of this tendency is found, in
computing, in accounts such as The Aesthetics of Computing.16 But it
is far more violently enhanced by computing when it works to pro-
vide an aesthetics of social control. There are far more opportuni-
ties offered by constructional and fabulatory approaches. Numbers
do not provide big answers, but rather opportunities to explore fur-
ther manifold and synthetic possibilities—that is to say, they pro-
vide access to more figures.

CRITICAL THEORY

Under the aisle-headings Critical, Social, Political, Cultural,
Material, Visual, Aesthetic or Blahblah Theory there is a ware-
house of tools available, tools which are held back from invading
the conceptual domains of software by the myth of its own neu-
trality as a tool. These rubrics themselves are only really of any use
when they are disingenuous, when they don’t quite fit. For this rea-
son, there’s no option of chewing through the Dewey Decimal
System and tabulating them. (The use of the term “theory” is here
meant simply as that which develops a model of an approach to the
material it works on as it uses it, and with which it shares an equal
importance in terms of its production. It therefore acts in relation
to other such models at the same time as operating in the field on
which it attends. This might be true to some extent of writings on
HCI and in programmers’ self-accounts, but these are always pri-
marily, rather than equally, concerned in epistemological terms
with the accomplishment of an instrumental task.) Here, it is only
necessary to make two suggestions, one in terms of scale, the other
in terms of activity.

In general, critiques of technologies, particularly media, are made
on the basis of a category or class of objects, rather than specific
instances of that class.17 Perhaps the timescale of literary produc-
tion precludes anything else, but it is also a question of pretensions
to timelessness. Why spend time working into a piece of software,
when it’ll be reversioned in a couple of months? The kind of mate-
rial that is now gathered to beat students about the heads with as

16 Behind the Blip



“cyberculture” is generally exemplary in this way. Would it not
make more of the gift of your wisdom to the human race to ponder
the verities of some enormous category that will combine shelf-
longevity and discourse-redeployment potential? It is not that such
work is strictly non-empirical, but that in being concerned with
offering grand theory-panoramas and generic summations any
chance of latching into particularities, particularly those against
which such concepts can be tested, disappears under the clouds.

That timescales need also not be determined by corporate
release schedules in producing an analysis of software is suggested
by Donald Knuth18 when he proposes a deceptively simple task for
computer scientists: Analyse every process that your computer
executes in one second. Writing at the end of the eighties, he sug-
gests the number of tasks will be around 250,000. Perhaps this
would provide sufficient scope? Timelessness condenses, and the
researcher appears years later having annotated an entire second’s
worth of hundreds of thousands of instructions. Most of the tran-
script would of course consist of repetitions of instructions carried
out on minutely incremental changes in variables. Why not con-
taminate this simple telling of the story of what goes on inside a
computer with its all-too-cultural equivalent? The transcript of the
contents of a mind over one day, or of a memory in the transit of a
morsel of cake from plate to mouth, provided opportunities for sen-
tences in “fiction” to slide in and out of scale, from layer to layer,
in convulsions of sprouting, connecting text. Perhaps the same can
also be done at this scale?

At another scale, one of the advantages of the work of Jakob
Nielsen, Donald Norman, and others is precisely that they focus in
on very specific problems, albeit those of a narrow cast and range
of interpretation. Although they tend to deal in a somewhat over-
literal application of cybernetic “constraint” rather than the gener-
ation of its twin, “freedom,” their focus allows them to claim at the
very least the rhetorical power of practice. Nit-picking has the
capacity to become another mode of the war of the flea.
Theorisations of software that are able to operate on the level of a
particular version of a program, a particular file structure, protocol,
sampling algorithm, colour-scheme, API, Request For Comment,

Behind the Blip: Software as Culture 17



and so on, are necessary. Further, it is essential to understand any
such element or event as only one layer or node in a wider set of
intersecting and multi-scalar formations. That is to say that, whilst
within a particular set of conditions its function might well be to
impose stasis upon another element, such an effect cannot always
be depended upon. In addition, whilst one might deal with a par-
ticular object, it must always be understood not as something
static, although it may never change, but to be operating in par-
ticipial19 terms.

Such a focus on the unfolding of the particular—with an atten-
tion to how they are networked out into further vectors, layers,
nodes of classes, instrumentalisations, panics, quick fixes, slow col-
lapses, the sheerly alien fruitfulness of digital abundance, ways in
which they can be taken up and made strange, mundane, and beau-
tiful—will at least ensure two things. First, that it busts the locks
on the tastefully-interiored prison of stratified interdisciplinarity. It
would be a dire fate to end up with a repetition of the infinitely
recessive corridor of depleted jargons and zombie conferencing of
Film Studies. Second, and in terms of activity, that an engaged
process of writing on software might reasonably hope to avoid the
fate of much recent cultural theory, that is to say, to step outside of
its over-eager subordination to one end of the schematic of infor-
mation theory: reception.

AVERSION TO THE ELECTRONIC: A HALLMARK OF
CONCEPTUALITY?

As an example of where theoretical work presents us with an
opportunity to go further, I want to run through a particular exam-
ple.

In their book What Is Philosophy?,20 Gilles Deleuze and Félix
Guattari present a back-to-basics manifesto. Philosophy has
become the domain of men whose occupation is the construction
of vast hulks of verbiage—immense dark ships with their single-
minded captains, vessels constructed of words, unable, unwilling
even to communicate amongst themselves and which, as a result,
pass each other by in the night.

18 Behind the Blip



The book is at once a rescue of philosophy from its status as
doomed élite subculture staffed by the populations of the soon-to-
be closed ghost departments of the universities of Europe, and also
a restatement of the primary task of philosophy: the invention of
concepts. In order to state their case for this, they need to clear the
decks of other ways in which the word concept is used. One of the
problems they see facing their use of the term is that

in successive challenges, philosophy faced increasingly
insolent and calamitous rivals that Plato himself would
have never imagined in his most comic moments. Finally
the most shameful moment came when computer science,
marketing, design, and advertising, all the disciplines of
communication, seized hold of the word concept itself and
said: “This is our concern, we are the creative ones, we are
the ideas men! We are the friends of the concept, we put
it in our computers.”21

As is well known, their work is in many ways an immense,
vibrant resource. However, it appears that there is a particular
blockage, more so perhaps in the work of Deleuze than of
Guattari,22 when it comes to a useable theorisation of media. There
is a tendency here which is typical, not just of their work, but of
much theoretical work throughout the twentieth century. Whilst
some media systems, such as books, music, painting, film, etc., are
entered into with a profound spirit of exploration and invention,
those that are electronic are treated as being fundamentally suspi-
cious.

As a result, when they do touch on electronic media, their
work jumps into and out of various similarly short and undifferen-
tiated takes. In short, electronic media do participate in “conceptu-
ality.” The conceptual personae that Deleuze and Guattari so
suggestively propose in What Is Philosophy? can be read as a pro-
posal for an understanding of software as a form of digital subjec-
tivity—that software constructs sensoriums, that each piece of
software constructs ways of seeing, knowing, and doing in the
world that at once contain a model of that part of the world it
ostensibly pertains to and that also shape it every time it is used.

Behind the Blip: Software as Culture 19



(This is what Kathy Acker is pointing to when the stolen software
in Empire of the Senseless appears as a live, severed head.) Further,
that each software element commonly interprets and remodulates
what is understood to be the same, or a similar, process. For
instance, the various takes on writing (plain text-editing, word pro-
cessing, markup, and so on) presented by editors such as BBEdit,
vi, Microsoft Word, LaTeX, etc.23

Whilst this domain of non-philosophical concepts is charac-
terised as shameless and inane, it is unusual to find these materi-
alists drawing such a concrete boundary beyond which creation
and an experimental politics cannot exist. My impression, though,
is that this is the result of a confusion, which can be read through
conflicting tendencies in Deleuze and Guattari’s own work. These
should be read as pointers to problematics which certainly exist in
the production of a theory of software. They are warnings, but ones
that cannot be said to provide absolute stoppage to the inventive
powers that lie in this area.

The tension between the approaches combined in their writ-
ings is clear. In terms of the wider field of electronic media, it is
perhaps best seen in the way in which TV is described as a force
that bridges the gap between the Althusserian models of repression
and ideology, by offering simultaneous subjection and enslave-
ment. That is, that viewers recognise themselves as the subject of
interpolation of the television, but at the same time in a state of
cybernetic submission to its sequence of switches, flashes of light,
and bursts of input.24

Anyone who has watched CNN during the war over the
monopoly on terror will know the moralistic slavery that is already
presupposed of its audience by these broadcasters, the “we” that is
called to order by its clatter of statements and opinions. What
Deleuze and Guattari describe is clearly a tendency, an attractor,
within media systems, but cannot be said to be a compelling
description. Instead such theoretical positions need to be opened
up.

Whilst they are almost useless in their direct characterisations
of electronic media, the tools to do some of this opening up can of
course be found in the same books. This is a characteristic of what

20 Behind the Blip



Robert Cooper calls their capacity to produce “generic,”25 mobile
concepts. In their writings on war machines—assemblages at any
scale and of any type that attack or break free of total positioning
systems—and their relationships to state formations, they note that

(doubtless) the State apparatus tends to bring uniformity to
the regimes, by disciplining its armies, by making work a
fundamental unit, in other words, by imposing its own
traits. But it is not impossible for weapons and tools, if
they are taken up by new assemblages of metamorphosis,
to enter other relations of alliance.26

Computers must be understood already as assemblages. In his
Lectures on Computation, Richard Feynman notes research that
specifies thirteen levels to an operating system. “This goes from
level 1, that of electronic circuitry—registers, gates, buses—to num-
ber 13, the Operating System Shell, which manipulates the user
programming environment. By a hierarchical compounding of
instructions, basic transfers of 1’s and 0’s on level one are trans-
formed, by the time we get to thirteen, into commands to land air-
craft in a simulation or check whether a forty-digit number is
prime.”27 Since the time of his writing, 1984, many more “levels”
have become involved: The various protocols of interface, licens-
ing, network, the ways in which computation has been coded and
styled for various markets, are only a few examples. What is con-
tended here is that any one of these levels provides an opportunity
for critique, but more importantly for forms of theorisation and
practice that break free of any preformatted uniformity. Since it is
what they are further assembled with that determines their meta-
morphosis, it is the task of such practical and theoretical work to
open these layers up to the opportunity of further assemblage.

Curiously, this is precisely the lesson that Deleuze and
Guattari draw from another form of electronic media, the synthe-
siser. What is the “thought synthesiser”28 that they suggest? By
assembling modules, source elements, and elements for treating
concepts (oscillators, generators, and transformers), by arranging
microintervals, the synthesiser makes conceptualisable the philo-
sophical process, the production of that process itself, and puts us

Behind the Blip: Software as Culture 21



in contact with other elements of matter. In this machine com-
posed by its materiality and force, thought travels, becomes
mobile, synthesises.

Why, in their reading of the synthesiser, is there no dismay at
humans merely providing a relay system between the variable
actuations of a circuit board? It is certainly to pay attention to the
wider assemblages which they form and are formed by. Because to
describe the synthesiser as terminally as they do the TV would be
to give up, to stop making a machine in the machine.

PRODUCTION

Instead of criticism, then—software criticism per se—what I want
to suggest is that we pay attention to some practices within soft-
ware production that emerge with and through thought out of
whack with its simple reproduction.

Criticism proper, the self-abrogated privilege of judgement, is
always predicated on finding itself absent from what it critiques.
This true thought of the outside is that which can find no point of
connection with what it surveys—except, that is, in pleasure in the
announcement of its absolute corruption. Is anyone capable of
such magnificent isolation? And this is why it is necessary to pres-
ent some models of software production that contain engines for its
theorisation. These are models that have arisen from work done
over the last few years by a number of groups. No special claim is
made that they exhaust any set of possibilities, nor that any of
these models excludes characteristics given under another heading;
they simply form notes on work going on.

CRITICAL SOFTWARE

One of the ways in which the currents described here first became
manifest is in the creation of pieces of software designed explicitly
to pull the rug from underneath normalised understandings of soft-
ware. In 1957 Roland Barthes prefaced Mythologies, his collection
of essays on the common-sensical mores of then-contemporary
French bourgeois life, with the phrase, “Sarcasm is the condition of
truth.”29 Nowadays there is no need to dispute sarcasm’s unique

22 Behind the Blip



access to enlightenment. What is redundant now is any condition-
ality. Sarcasm is truth. Critical software is a voyage into that truth
by means of its own devices.

What are the ways in which critical software operates? There
are two key modes. First, by using the evidence presented by nor-
malised software to construct an arrangement of the objects, pro-
tocols, statements, dynamics, and sequences of interaction that
allow its conditions of truth to become manifest. This is the mode
of operation of the installation “A Song for Occupations,” which
simply maps out the entire interface of Microsoft Word to reveal
the blue-grey labyrinth in which writing is so happily lost. Richard
Wright’s CD-ROM Hello World takes a similar tack in making a
comparative analysis of the interfaces and data structures—and
consequent ways of knowing, seeing, and doing—of various video-
editing and -effects packages such as Quantel, After Effects, and
Flame.

The second way in which Critical Software may be said to exist
is in the various instances of software that runs just like a normal
application, but has been fundamentally twisted to reveal the
underlying construction of the user, the way the program treats
data, and the transduction and coding processes of the interface.
Much of this work has been achieved in terms of games. Jodi’s
work on Wolfenstein and Quake is paradigmatic here, but there is
a whole run of work, using mod files and patches, that can be seen
in this light.30 Additionally, there is a strand of work that has been
cracked and messed with, by means of programs such as ResEdit,
in order to gain access to its kernel of truth. The interfaces of stan-
dard software packages are rewritten.31 Perhaps some of the actions
defacing websites can also be said to belong to this current.32 What
this work does is make apparent the processes of normalisation
operating at many scales within software—the ways in which, for
instance, millions of separate writing acts are dedifferentiated by
the various layers of a word processing program. By acting within
it in a way that is both investigative and emetic, it points towards
a move beyond the boundaries observed in simple institutional cri-
tique, towards other modes of creation. Not only that, but it per-
forms the necessary task of allowing a negativistic maggot to

Behind the Blip: Software as Culture 23



remain in all the golden apples of the two currents that follow, lest
they be mistaken for a simply positive contribution to the empire
of happiness.

SOCIAL SOFTWARE

Social software can provisionally be said to have two strands.
Primarily it is software built by and for those of us locked out of
the narrowly engineered subjectivity of mainstream software. It is
software which asks itself what kind of currents, what kinds of
machine, numerical, social, and other dynamics, it feeds in and out
of, and what others can be brought into being.

The second strand is related to this. It is software that is
directly born, changed, and developed as the result of an ongoing
sociability between users and programmers in which demands are
made on the practices of coding that exceed their easy fit into stan-
dardised social relations

In most cases, these two threads interweave. It is how they do
so, how their multiple elements are brought into communication
and influence, that determines their level of success.

I would like to suggest that Free Software can be usefully
understood to work in these terms. It is a socio-technical pact
between users of certain forms of license, language, and environ-
ment. The various forms of free or open-source software are devel-
oped as part of the various rhythms of life of software production.
In addition, new social machines are invented to spawn the code,
to diffuse and manage its development.

The pace and style of life in these forms of software develop-
ment and diffusion can be understood to form their internal cul-
ture. For many, this is a functional utopia for coders, brought about
by digital abundance. Much could be said about the way in which
open-source code interrelates with the world of work—how class
libraries function as a form of solidarity between programmers in
minimising labour-time, but also how technical obscurantism is
necessitated in order to maintain the caste privilege.

24 Behind the Blip



Thus, the second thread in this proposed conception of social soft-
ware is partially met by the various strands of the open source
movement. The ongoing sociability between users and program-
mers is there precisely because the users and programmers are one
and the same. As is commonly acknowledged, this has provided
the motivating force for the first stages of this movement. Why is
Apache the best web server software? Because it is written by
those who know these systems best.

But this has also formed a blockage to wider uptake of such
systems. Free software is too internalist. The relation between its
users and its developers is so isomorphic that there is extreme dif-
ficulty in breaking out of that productive but constricted circle.
One way out of this is seen as finding ways in which free software
can bring itself into communication with users who are not also its
primary developers. This is crucial, but it is how it is done, and
how it weaves this connection with the first thread of social soft-
ware, that will determine its success. New imaginal and commu-
nicative capacities to enter into relations of becoming—of machine,
technical, aesthetic, and social dynamics—are required. And it is
here that free software now faces its biggest problem.

Free software taps into the dynamics of mutual aid, of shared
resources, code conservation, and plagiarism, to get itself made.
Now it needs to begin to set technico-aesthetic agendas which open
and set flying the ways of sensing, knowing, and doing built into
proprietary software. Death to bludgeoning pseudo-rationalism,
and the feature-breeding world as office! Supposedly free software
projects such as K Office are fundamentally flawed. They may have
freedom in the sense of free speech, but this speech is not the
result of free thought. Their composition is determined by a sub-
missive relation to the standards set by Microsoft. This is a delib-
erate abdication of the imagination in dealing with the culture and
structuration of all the kinds of work that take place in offices, a
failure to take up the possibility of the reinvention of writing that
digital technology offers.

In order to escape the impasse of open-source internalism, the
developers of this mode of free software have attempted to connect
to other kinds of users. But the users they are attempting to recruit

Behind the Blip: Software as Culture 25



are precisely those formed and normalised by proprietary soft-
ware. (By this I mean not the actual users of the software, but the
models of them that are put into place by that software—and which
it is therefore unable to distinguish and learn from.)

The mobilisation of free software by corporations is not my
theme here, although what is perhaps most crucial but invisible in
software—the model of life, the figuration of a user determined by
these organisations—has yet to prove anything other than funda-
mentally entropic to innovation in these areas. The challenge to
free software is that although it has massified its user base to some
extent it faces the danger, not yet the actuality, of becoming con-
ceptually stalled. This kind of reinvention might well be taken up
by others.

One of the ways in which this is being done is via a mobilisa-
tion of elements in the first thread of social software. How far can
the thinking about free software be opened by viewing itself as part
of this wider tendency? One easy answer is that it allows the pos-
sibility of finding and communicating with users other than those
modelled by pre-existing proprietary software. If the second thread
of social software is born out of extended negotiation between
users and developers, even to the extent that the difference
between them is blurred, what are the ways we can ensure that
that communication does not result in a closing back in on itself
into another isomorphic circle? Primarily by insisting on the
inevitable disequilibrium of relations between the user and the
programmer. This is a political fact which cannot be avoided.
Despite the fact that free software makes public the labour which
is repressed from visibility under proprietary software, it is still the
case that whoever is “closest to the machine” owns the space of
possibilities which the relations have been established to explore.33

How can this disequilibrium be tipped over into a kind of
movement other than that of absolute polar attraction by the
“expert”? The first thread of social software offers us some routes
into this problem. The answer is, inevitably, more careful work,
more attention, more openness to difficulty and connection. We
can only generate social software in its full sense through funda-
mental research into the machine, numerical, social, and other

26 Behind the Blip



dynamics that software feeds in and out of. However, these sys-
tems need to be understood in a sense expanded from that which
software currently allows itself to know. The problem is not in
recognising other forms of “expertise” and finding ways of access-
ing them. (We might consider as an opposite tendency the example
of an artists’ collective developing a city-mapping initiative in
which they are only able to communicate with other “profession-
als” such as architects, critics, and theorists. Such is the stratified
poverty of inter-disciplinarity.) There is a far more important need
to recognise and find ways of coming into alliance with forms of
intelligence that are excluded from the depleted culture of experts.

One of these, I would like to argue, is a poetics of connection.
There are ways in which technologies are taken over in ways

that surpass product specifications. One of the most recent and
notable examples is the use of the SMS protocol on GSM mobile
phones. To manufacturers and network operators this cranky little
texting facility was seen as a novelty, a little nothing, a gimmick.
Instead, it has taken off and becomes what is well known today.

For many ostensibly radical theorisations of technology and
media this is a problem. Perhaps we will always return here to a
base–superstructure model: That is, property relations ultimately
determine use. Under this rubric, there are two problem with text-
ing, and with mobiles in general. First, the networks are cen-
tralised, running on a spoke-to-hub topology. They are owned by a
multinational oligopoly. Second, their standards are not open: They
cannot be accessed, improved upon, or reinvented except in com-
pliance with the needs of these companies. This theory is able to
account for why there has been no substantially innovative work
by artists using mobile phones alone—there is no way of messing
with the architecture. (It has to be collaged with other media sys-
tems in order to tease out new possibilities.34) And for this reason
it is of fundamental use.

What it cannot account for is the way that this technology has
been overrun and conceptually, if not infrastructurally, reinvented
by hordes of what are seen as rather insignificant non-experts:
teenagers, illegal workers, gossip-mongers, and so on. All of these
subsist and thrive on their powers of connection, of existing in a

Behind the Blip: Software as Culture 27



dimension of relationality rather than of territoriality. It is in their
capacity to generate a poetics of this connection that they have
reinvented this technology. (This is now a commonplace, of course,
but only in retrospect. And as Sadie Plant notes, it was not even
recognised as a possibility by those charitably concerned with
widening access to networks like the internet.35)

Such a dynamic has also formed the basis for the development
of a piece of software, Mongrel’s Linker.36 This program is
described more fully elsewhere, but it is essentially a small appli-
cation that allows the fast authoring of multimedia collages. The
software was developed by Mongrel to meet its needs for applica-
tions that can be introduced and used within a day or two. The
functionality—when compared with the software used to create it,
Macromedia Director—is massively stripped down. Instead of the
interface being the usual grey windowed explosion of digital abun-
dance, you get very little. The processing is shifted to the user. It
relies on people’s ability to generate narrative, political, melan-
choly, rhythmic, scattershot associations. It relies on the simple
function of doing exactly what the name says it does—linking
things. Here, the poetics of connection forms a techno-aesthetic
and existential a priori to the construction of a piece of software.

This is a piece of software that has built itself up on learning
from and through what occurs unofficially, the ways in which peo-
ple, networks, drives, and languages coalesce to circumvent, para-
sitise, or overturn what codes, produces, and regulates them. Such
an activity should not be understood as safely giving vent to an
essential human need. It is pathological as much as anything else.
But it is in paying attention to the way these dynamics work in par-
ticular instances, in acknowledging the intelligence built into them,
that the potential for another form of software comes into view.

Poetics of connection is only one such dynamic. There are
many others that could be worked into. The concept of social soft-
ware, too, provides only something small, a little nothing. But with
its two strands, in its necessarily unbalanced and mobile state, it
provides another motor for creation, of the social as well as of soft-
ware.

28 Behind the Blip



SPECULATIVE SOFTWARE

The best fiction is always also attempting to deal with the crisis of
written language, in the way that it asks itself about the legacy
built into text as the result of its birth in the keeping of records, in
the establishment of laws, in assembling and managing tables of
debt and credit. It does this perpetually, at the same time as rein-
venting and expanding upon the capacity of language to create new
things. Speculative software fulfills something of a similar function
for digital cultures. In Ellen Ullman’s Close to the Machine, she
states:

I’d like to think that computers are neutral, a tool like any
other, a hammer that can build a house or smash a skull.
But there is something in the system itself, in the formal
logic of programs and data, that recreates the world in its

own image . . . We place this small projection of ourselves
all around us, and we make ourselves reliant on it. To keep

information, buy gas, save money, write a letter . . . We
conform to the range of motion the system allows. We
must be more orderly, more logical. Answer the question

Yes or No, OK or Cancel . . . Then, slowly, we incorporate
the whole notion of systems: We’ll link registration data to

surveillance,37 to contract compliance . . . Finally, we
arrive at a tautology: The data prove the need for more
data! We think we are creating the system, but the system
is also creating us. We build the system, we live in its
midst, and we are changed.38

Ullman’s book is the best account of the lived experience of
programming that I’ve read, but I’m not quite sure who this “we”
is. Perhaps it’s the same “we” that always turns up when a
voiceover speaks slowly over a heavy-concept TV documentary.
There are pictures of traffic jams, mobile-phone users, nuclear
power plants, cubicled workplaces, and ATMs, probably filmed in
black and white, portentousness filters set to stun. The “we” is the
“we” as in a tremulous, “What have we done to ourselves?” The
“we” is an attempt to universalise rather than identify more pre-

Behind the Blip: Software as Culture 29



cisely definable, albeit massively distributed and hierarchised, sets
of conflictual, imaginal, and collaborative relations.

Elsewhere, speculative software has been suggested as being soft-
ware that explores the potentiality of all possible programming. It
creates transversal connections between data, machines, and net-
works. Software whose work is partly to reflexively investigate
itself as software. Software as science fiction, as mutant epistemol-
ogy.

Speculative software can be understood as opening up a space
for the reinvention of software by its own means. That is to say that
when, as Ullman suggests, the computer has “its own place where
the systems and the logic take over,”39 this is a place that can be
explored, mapped, and messed with by a skewed application of
those very same means.

In Close to the Machine, the narrator worries about a new pay-
roll system that she’s just been hired to work on:

I’ll wonder what I’m doing helping the IRS collect taxes. It
will bother me that so many entities—employer, software
company, bank, IRS—know so much about the simple act
of someone getting paid for labour delivered. I’ll think
about the strange path of a paycheque direct-deposit, how
it goes from employer to bank, company to company,
while the person being paid is just a blip, the recipient’s

account a temporary way-station . . .40

Each of these entities—employer, software company, bank,
IRS, employee—is composed by myriad interacting and agonistic
relations. These blips, these events in software, these processes and
regimes that data is subject to and manufactured by, provide flash-
points at which these interrelations, collaborations, and conflicts
can be picked out and analysed for their valences of power, for
their manifold capacities of control and production, disturbance
and invention. It is the assertion of speculative software that the
enormous spread of economies, systems of representation, of dis-
tribution, hiding, showing, and influence as they mesh with other
systems of circulation, of life, ecology, resources—themselves

30 Behind the Blip



always both escaping and compelling electronic and digital mani-
festation—can be intercepted, mapped, and reconfigured precisely
by means of these blips.

What are these blips? They are interpretative and reductive
operations carried out on lived processes. They are the statistical
residues of dynamics of association, escape, misery, acquiescence,
and delight. They are not merely signifiers of an event, but integral
parts of it. The figures in a bank balance, the links appearing in a
web browser, are concrete arrangements, formations that deter-
mine relative degrees of potential movement within a specified
level of analysis or use of a system. They have an implicit politics.
Their aesthetics can be described as the result of the range of their
potential combinatorial or isolatory capacity and its allowance of
capture, invention, interrogation, or flight, the rhythms of peace or
of compulsion that they put into place.

There are certain ways in which one is supposed to experience
these blips. They are intended to mean that you are precisely broke
at this time of the week, or that there are so many or no related
web sites outside of the one you are currently viewing. Such state-
ments, of course, are dependent on particular arrangements by
which they can be made. Your wage statement is the cryptic blip
that instantiates the enormous machine of class relations. A list of
links is the result of a particular culture of association amongst a
certain range of types of site, of which the site you are viewing is
one instance.

These instances, these blips, are all manifest digitally. They can
be picked out, mapped, arranged, examined, and placed in com-
parison with each other. Their modes of emergence and combina-
tion can be ascertained along with their conditions of repetition
and change. The capacity of computers to perform these operations
is what provides the fuel for speculative software—that is, software
which refuses to believe the simple, innocent stories that accom-
pany the appearance of these blips. Software that skews, misreads,
and takes them for a little walk, but that not only reinterprets but
leaves an invention of blips in its wake.

It is this capacity for invention and reinvention that is charac-
teristic of digital abundance more generally, however little it is

Behind the Blip: Software as Culture 31



taken up. What characterises speculative work in software is, first,
the ability to operate reflexively upon itself and the condition of
being software—to go where it is not supposed to go, to look
behind the blip; to make visible the dynamics, structures, regimes,
and drives of each of the little events which it connects to. Second,
it is to subject these blips and what shapes and produces them to
unnatural forms of connection between themselves. To make the
ready ordering of data, categories, and subjects spasm out of con-
trol. Third, it is to subject the consequences of these first two stages
to the havoc of invention.

NOTES

1. Pit Schultz made this suggestion as part of the preparatory
work on the Software as Culture thread for Wizards of OS 2: Open
Cultures and Free Knowledge, Berlin, October 2001. A version of
this text was first prepared for that conference. Further information
at: http://www.wizards-of-os.org/

2. Jeannette Hofmann, “Writers, Texts, and Writing Acts:
Gendered User Images in Word Processing Software,” in Donald
MacKenzie and Judy Wacjman, eds., The Social Shaping of
Technology, second edition (Buckingham: Open University Press,
1999), pp. 222–243.

3. Paul N. Edwards, The Closed World: Computers and the
Politics of Discourse in Cold War America (Cambridge, MA: MIT
Press, 1996).

4. Michael R. Curry, Digital Places: Living with Geographical
Information Systems (London: Routledge, 1998).

5. Don Mackenzie, Inventing Accuracy: A Historical Sociology of
Nuclear Missile Guidance (Cambridge, MA: MIT Press, 1990), and
Knowing Machines: Essays on Technical Change (Cambridge, MA:
MIT Press, 1996).

6. See, for instance, the work of Susan Leigh Star and others in
Cultures of Computing (Oxford, Blackwell, 1995).

32 Behind the Blip



7. Michael Heim, Electric Language: A Philosophical Study of
Word Processing (New Haven: Yale University Press, 1987).

8. Friedrich A. Kittler, Literature, Media, Information Systems,
ed. John Johnstone, trans. various (Amsterdam: G&B Arts
International, 1997).

9. An HTML version of the first edition of Tools for Thought is
at: http://www.rheingold.com/texts/tft/

10. J. David Bolter, Turing's Man: Western Culture in the
Computer Age (London: Penguin, 1986).

11. Martin Helander, Thomas Landauer, Prasad Prabhu,
Handbook of Human–Computer Interaction (Oxford: Elsevier, 1997).

12. Alan Cooper, The Inmates Are Running the Asylum
(Indianapolis: Sams Publishing, 1999). Cooper's approach is a par-
ticularly developed formulation of a range of procedures current in
HCI’s relation to users. A related set of processes for working
through variable possibilities in interface and functionality is
described, for instance, by Joy Mountford in “Tools and Techniques
for Creative Design” in Brenda Laurel, ed., The Art of Human
Computer Interface Design (Reading, Massachussetts: Addison
Wesley, 1990) pp.17–30.

13. Of course, something of the sort is often done in product
marketing, where potential customers are assumed to be able to
identify with a range of typed user personalities. Phone companies
use such approaches to sell tariffs and handsets. Such overt user-
formatting is always responded to with the tactics of double-con-
sciouness.

14. At http://www.wall.com/larry/
15. Ellen Ullman, Close to the Machine (San Francisco: City

Lights, 1997).
16. David Gelerntner, The Aesthetics of Computing (London:

Phoenix, 1998).
17. Of course, there are plenty of exceptions to this self-gener-

alising statement. One of those that shows a way in which atten-
tion to the specificity of a particular technology is rewarded with
great clarity is Bruno Latour, “The Berlin Key, or How to Do Words
with Things,” in P. M. Graves-Brown, ed., Matter, Materiality and
Modern Culture (London: Routledge, 2000.) Latour’s work here is

Behind the Blip: Software as Culture 33



derived from a current of work, Actor-Network Theory (ANT),
which, despite being specifically located in sociology, may well be
of substantial use in developing a productive conceptualisation of
software. A useful summary of the history of ANT can be found in
the first couple of chapters of Mike Michael, Reconnecting Culture,
Technology and Nature: From Society to Heterogeneity (London:
Routledge, 2000).

18. Donald Knuth, “Theory and Practice,” address to 11th
World Computer Congress, San Francisco, 28 August 1989;
archived as a TeX file at http://www-cs-faculty.stanford.edu/
~knuth/preprints.html

Such an analysis might provide an insight into how CPU cycle
allocation is made on the basis of hierarchies of tasks, which would
inevitably contain models of the user. For a useful take on a related
problem, see Harwood’s “A Manifesto for Useless Art” at
http://www.scotoma.org/

19. Elaine Scarry usefully introduces this term. Derived from
grammar, it simply means a word that is both a verb and a noun,
a thing and a motion. Resisting Representation (Oxford University
Press, 1994).

20. Gilles Deleuze and Félix Guattari, What Is Philosophy?,
trans. Hugh Tomlinson and Graham Burchill (London: Verso,
1994).

21. Ibid., p.10.
22. What can be seen as the beginnings of a useful theorisation

of electronic media can be seen most clearly in Guattari's
“Regimes, Pathways, Subjects,“ in Gary Genosko, ed., The Guattari
Reader (Oxford: Blackwell, 1996), and also in Jonathan Crary and
Stanford Kwinter, eds., Incorporations (New York: Zone, 1992).

The other text in which Guattari makes a real start on such
work (but cannot of course be said to have this simply as his focus)
is the chapter “Machinic Heterogenesis” in Chaosmosis: An Ethico-
Aesthetic Paradigm (Sydney: Power Publications, 1995, p. 97).

Elsewhere, in this and other texts, Guattari simply makes pass-
ing references to themes close to the ideas of collective intelligence
developed by Pierre Lévy, but also invests in the hope of reinvent-
ing a new kind of orality through machines (for instance, in

34 Behind the Blip



Nicholas Zurbrugg, Postmodernism and Ethical Abdication, and
Genosko, op. cit., p. 115). Such technology has so far resulted in
applications requiring very narrow sets of vocabulary, such as
automatic telephone-answering or control of subsidiary dashboard
functions in cars, but is of immense interest in terms of its poten-
tial to, for instance, reorganize language around archivable orality.
(If full voice-recognition is developed, what are the implications for
text? All linguistic data could be stored, searched, and cross-refer-
enced as spoken word, with a potentially enormous effect on the
way in which forms of speech, text, are currently valued, used, and
ordered into hierarchies.)

The scope of the present essay is not a comprehensive philo-
logical examination of figurations of the electronic in Deleuze and
Guattari, but it might be useful to point towards the material on
music and synthesizers compiled by Richard Pinhas at Web
Deleuze (http://www.webdeleuze.com/), and also their use of an
information-theory model adapted from Rosenstiehl and Petitot to
discuss technologies of social control in the “Rhizome” section of A
Thousand Plateaus, op cit.

23. Thanks to Florian Cramer for a demonstration of vi which
brought this sharply into focus. See also, “It Looks Like You’re
Writing a Letter: Microsoft Word” in this volume.

24. “For example, one is subjected to TV insofar as one uses
and consumes it, in the very particular situation of a subject of the
statement that more or less mistakes itself for a subject of enunci-

ation (‘You, dear television viewers, who make TV what it is . . . ’);
the technical machine is the medium between two subjects. But
one is enslaved by TV as a human machine insofar as television
viewers are no longer consumers or users, not even subjects who
supposedly ‘make’ it, but intrinsic component pieces, ‘input’ and
‘output,’ feedback or recurrences that are no longer connected to
the machine in such a way as to produce or use it. In machinic
enslavement, there is nothing but transformations and exchanges
of information, some of which are mechanical, others human.’ (A
Thousand Plateaus, p. 458). See also the brief section “If Literature
Dies It Will Be Murder” in the interview “Mediators,” included in
Gilles Deleuze, Negotiations, trans. Martin Joughin (New York:

Behind the Blip: Software as Culture 35



Columbia University Press, 1995), and the perceptive account of
the way in which TV formats such as chat shows reduce thought,
writing, and dialogue to a series of “positions” in Gilles Deleuze
and Claire Parnet, Dialogues, trans. Hugh Tomlinson and Barbara
Habberjam (London: Continuum, 2002).

25. Robert Cooper, “Assemblage Notes,” in Robert C. H. Chia,
ed., Organised Worlds: Explorations in Technology and Organization
with Robert Cooper (London: Routledge, 1998) pp. 108–330.

26. Gilles Deleuze and Félix Guattari, A Thousand Plateaus, p.
402.

27. Richard P. Feynman, Feynman Lectures on Computation,
Anthony J. G. Hey and Robert W. Allen, eds. (London: Penguin,
1996), p. 4. (The article he cites is P. J. Denning & R. L. Brown,
“Operating Systems,” Scientific American, September 1984, p. 96.)

28. Gilles Deleuze and Félix Guattari, A Thousand Plateaus, p.
343.

29. Roland Barthes, Mythologies (London: Paladin, 1973).
30. A program for the Mac through which the look of an inter-

face, the text of dialogue boxes, and other more intricate resource
allocations can be manipulated. An example of this mode might be
Heritage Gold, a reversioning of Photoshop 1.0. A useful site on
ResEdit is http://www.machacks.com/

31. Two sites monitoring and documenting this form of activ-
ity are: http://www.attrition.org and http://www.alldas.de

32. See for instance, the TextFM project to link users of SMS
with a means of generating instant audio broadcast via radio:
http://www.scotoma.org/TextFM/

33. In another context, the workplace, this “closeness” is
meshed into a different set of inter-relations. The degree to which
programmers have control over the rate and way in which they
work, the way in which they define what is “possible,” and the
ways in which it might be achieved has of course been one of the
key guarantees of their value as labour. Software production man-
agement techniques are developed precisely to counter and close
down and rationalise such processes.

34. It is also clear that speculative uses of phones were being
made by hackers and phreaks as soon as any new technologies or

36 Behind the Blip



routes into them became available, and for as long as they’ve
existed in any form. How hacking can be understood to operate as
a technico-aesthetic and perceptual activity with important conse-
quences for the themes of this essay is developed amongst other
places in Cornelia Sollfrank’s Liquid Hacking http://www.obn.org/
LHL/concepte.html and Hacks, a documentary by Christine Bader
(1997). Info on this film at: http://www.choiproductions.com/

35. Sadie Plant, “On the Phone,” Motorola, 2002.
36. The Mongrel web site is at: http://www.mongrelx.org/.

Linker is available to download at: http://www.linker.org.uk/. A
recent internet-based development of this software, called Nine,
maintains its original features, but makes the code and the process
of using it more available and open to development. To use or view
Nine, check http://9.waag.org/.

A consideration of social software might also be made in rela-
tion to Piloot, a custom form of groupware whose development
was led at the Society for Old and New Media, Amsterdam:j52

http://www.waag.org/
Another application that might well be understood on these

terms is the essential, constantly updated database of reusable soft-
ware serial numbers, Serial Box, and the program that it replaced,
Surfer’s Serials.

Perhaps there is something in that these pieces of software are
focused only on combining a small set of functions and processes
rather than acting as a metacultural factory typical of the large-
scale applications. By being clear—or attempting to be so—about
what they do, they can be perceived to a greater depth. There is no
pretence to be anything but simple mechanisms, with a particular
slant. It is perhaps this which allows their ready use or discarding.

37. Note, the specific forms of surveillance Ullman is referring
to are workplace systems where logging-on prompts keystroke-
counting, recording of web sites visited, etc. This form of worker
surveillance forms an inverse of the kind of study that Knuth sug-
gests.

38. Ullman, p. 89.
39. Ullman, p. 188.
40. Ullman, p. 188.

Behind the Blip: Software as Culture 37


