

Early praise for Arduino: A Quick-Start Guide, Second Edition

Buy this book only if you don’t mind being sucked into an amazing world of Ar-
duino hacking, programming, games, controllers, motors, tweeting, networking,
and lots of other mind-blowing things!

➤ Kevin Beam
Software engineer, National Snow and Ice Data Center (NSIDC)

Maik Schmidt’s writing style is engaging and makes complex concepts accessible.
When I finished the book, I was daydreaming about future Arduino projects I
could create.

➤ Matthew Sullivan
Senior Rails/Ruby developer, Paradigmisr

A very well-written, thorough introduction to the Arduino platform. The second
edition is a nice refinement of the first, with much updated as a result of the
changes to the platform since the initial release of the book.

➤ Mike Riley
Author, Programming Your Home, Build an Awesome PC, and Developing Android
on Android

Arduino: A Quick-Start Guide,
Second Edition

Maik Schmidt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

All circuit diagrams were created with Fritzing (http://fritzing.org).

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-224-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P2.0—March 2015

https://pragprog.com
http://fritzing.org
rights@pragprog.com

Contents

Acknowledgments xi

Preface xiii

The Parts You Need xix

Part I — Getting Started with Arduino

1. Welcome to the Arduino 3
What You Need 4
What Exactly Is an Arduino? 4
Exploring the Arduino Board 6
Installing the Arduino IDE 10
Meeting the Arduino IDE 14
Hello, World! 16
Compiling and Uploading Programs 19
What If It Doesn’t Work? 21
Exercises 22

2. Creating Bigger Projects with the Arduino 23
What You Need 23
Managing Projects and Sketches 24
Changing Preferences 26
Using Serial Ports 28
What If It Doesn’t Work? 35
Exercises 36

Part II — Eleven Arduino Projects

3. Building Binary Dice 39
What You Need 39
Working with Breadboards 40
Using an LED on a Breadboard 41
First Version of a Binary Die 45
Working with Buttons 48
Adding Your Own Button 53
Building a Dice Game 55
What If It Doesn’t Work? 59
Exercises 60

4. Building a Morse Code Generator Library 61
What You Need 61
Learning the Basics of Morse Code 62
Building a Morse Code Generator 62
Fleshing Out the Morse Code Generator’s Interface 64
Outputting Morse Code Symbols 65
Installing and Using the Telegraph Class 67
Publishing Your Own Library 71
What If It Doesn’t Work? 73
Exercises 73

5. Sensing the World Around Us 77
What You Need 78
Measuring Distances with an Ultrasonic Sensor 78
Increasing Precision Using Floating-Point Numbers 84
Increasing Precision Using a Temperature Sensor 86
Creating Your Own Dashboard 92
What If It Doesn’t Work? 97
Exercises 98

6. Building a Motion-Sensing Game Controller 99
What You Need 100
Wiring Up the Accelerometer 100
Bringing Your Accelerometer to Life 102
Finding and Polishing Edge Values 103
Building Your Own Game Controller 106
More Projects 109

Contents • vi

What If It Doesn’t Work? 110
Exercises 110

7. Writing a Game for the Motion-Sensing Game Controller . 111
Writing a GameController Class 112
Creating the Game 114
What If It Doesn’t Work? 124
Exercises 124

8. Generating Video Signals with an Arduino 127
What You Need 128
How Analog Video Works 128
Building a Digital-to-Analog Converter (DAC) 130
Connecting the Arduino to Your TV Set 131
Using the TVout Library 133
Building a TV Thermometer 134
Working with Graphics in TVout 139
What If It Doesn’t Work? 143
Exercises 144

9. Tinkering with the Wii Nunchuk 145
What You Need 145
Wiring a Wii Nunchuk 146
Talking to a Nunchuk 147
Building a Nunchuk Class 148
Using Our Nunchuk Class 152
Creating Your Own Video Game Console 153
Creating Your Own Video Game 153
What If It Doesn’t Work? 162
Exercises 162

10. Networking with Arduino 163
What You Need 164
Using Your PC to Transfer Sensor Data to the Internet 164
Registering an Application with Twitter 167
Tweeting Messages with Processing 168
Communicating Over Networks Using an Ethernet Shield 173
Using DHCP and DNS 177
What If It Doesn’t Work? 180
Exercises 181

Contents • vii

11. Creating a Burglar Alarm with Email Notification . . . 183
What You Need 184
Emailing from the Command Line 184
Emailing Directly from an Arduino 189
Detecting Motion Using a Passive Infrared Sensor 193
Bringing It All Together 197
What If It Doesn’t Work? 200
Exercises 200

12. Creating Your Own Universal Remote Control 201
What You Need 202
Understanding Infrared Remote Controls 202
Grabbing Remote Control Codes 203
Cloning a Remote 207
Controlling Infrared Devices Remotely with Your Browser 212
Building an Infrared Proxy 216
What If It Doesn’t Work? 223
Exercises 223

13. Controlling Motors with Arduino 225
What You Need 225
Introducing Motors 226
First Steps with a Servo Motor 227
Building a Blaminatr 230
What If It Doesn’t Work? 235
Exercises 235

Part III — Appendixes

A1. Electronics and Soldering Basics 239
Current, Voltage, and Resistance 239
Electrical Circuits 239
Learning How to Use a Wire Cutter 243
Learning How to Solder 243
Learning How to Desolder 247

A2. Advanced Arduino Programming 249
The Arduino Programming Language 249
Bit Operations 251

Contents • viii

A3. Advanced Serial Programming 253
Learning More About Serial Communication 253
Serial Communication Using Various Languages 255

A4. Controlling the Arduino with a Browser 267
What Are Google Chrome Apps? 267
Creating a Minimal Chrome App 269
Starting the Chrome App 270
Exploring the Chrome Serial API 271
Writing a SerialDevice Class 274

A5. Bibliography 281

Index 283

Contents • ix

Acknowledgments
Susannah Davidson Pfalzer was the editor of the first edition of this book.
When planning the second edition, I hadn’t forgotten how difficult it was to
write the first one, but I also remembered how great it was to work with her.
Again, she turned this endeavor into a real pleasure. Thank you very much!

This is not the first book I’ve written for the Pragmatic Bookshelf, so I knew
already how professional and nice everyone on the team is. Still, they get even
better every time, and I’d like to thank everyone for making this book happen.

This book would not have been possible without the stunning work of the
whole Arduino team. Thank you so much for creating Arduino!

A big thank you goes to all the people who contributed material to this book:
Christian Rattat took all the book’s photos, Kaan Karaca created the Blami-
natr’s display, and Kassandra Perch improved the JavaScript code in the
“Creating Your Own Universal Remote Control” chapter.

I created all circuit diagrams with Fritzing,1 and I’d like to thank the Fritzing
team for making such a great tool available for free.

For the games I developed for this book, I needed some artwork, and I’ve
found amazing things on the OpenGameArt website.2 I used some graphics
contributed by www.kenney.nl3 and a great song created by Alex Smith4 for
my breakout clone. Thank you for putting these into the public domain.

The background image of the browser game comes from ESA/Hubble, NASA,
Digitized Sky Survey, MPG/ESO (acknowledgment: Davide de Martin). The
image showing how raster scan works was created by Ian Harvey.

1. http://fritzing.org/
2. http://opengameart.org/
3. http://opengameart.org/content/puzzle-game-art
4. http://opengameart.org/content/awake-megawall-10

report erratum • discuss

http://fritzing.org/
http://opengameart.org/
http://opengameart.org/content/puzzle-game-art
http://opengameart.org/content/awake-megawall-10
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

For an author, there’s nothing more motivating and valuable than feedback.
I’d like to thank my reviewers: Kevin Beam, Jessica Janiuk, Kassandra Perch,
Mike Riley, Sam Rose, and Matthew Sullivan. This book is so much better
because of your insightful comments and suggestions!

Finally, I have to thank my wonderful wife, Tanja, and my adorable son, Mika,
for being patient and understanding whenever I had to write yet another page.

Acknowledgments • xii

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Preface
Welcome to Arduino, and welcome to the exciting world of physical computing!
Arduino1 is an open-source project consisting of both hardware and software.
It was originally created to give designers and artists a prototyping platform
for interaction design courses. Today, hobbyists and experts all over the world
use it to create physical computing projects, and you can, too.

Arduino lets you get hands-on again with computers in a way you haven’t
been able to since the 1980s, when you could build your own computer. And
Arduino makes it easier than ever to develop handcrafted electronics projects
ranging from prototypes to sophisticated gadgets. Gone are the days when
you had to learn lots of theory about electronics and arcane programming
languages before you could even get an LED blinking. You can create your
first Arduino project in a few minutes without needing advanced electrical
engineering coursework.

In fact, you don’t need to know anything about electronics projects to read
this book, and you’ll get your hands dirty right from the beginning. You’ll not
only learn how to use some of the most important electronic parts in the first
pages, you’ll also learn how to write the software needed to bring your projects
to life.

This book dispenses with theory and stays hands-on throughout. I’ll explain
all the basics you need to build the book’s projects, and every chapter has a
troubleshooting section to help when things go wrong. This book is a quick-
start guide that gets you up to speed quickly and enables you to immediately
create your own projects.

Who Should Read This Book
If you are interested in electronics—and especially in building your own toys,
games, and gadgets—then this book is for you. Although Arduino is a nice

1. http://arduino.cc

report erratum • discuss

http://arduino.cc
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

tool for designers and artists, only software developers are able to unleash
its full power. So, if you’ve already developed some software—preferably with
C/C++ or Java—then you’ll get a lot out of this book.

But there’s one more thing: you have to build, try, and modify the projects
in this book. Have fun. Don’t worry about making mistakes. The troubleshoot-
ing sections—and the hands-on experience you’ll gain as you become more
confident project by project—will make it all worthwhile. Reading about elec-
tronics without doing the projects yourself isn’t even half the battle. (You
know the old saying: we remember 5 percent of what we hear, 10 percent of
what we write, and 95 percent of what we personally suffer.) And don’t be
afraid: you really don’t need any previous electronics project experience!

If you’ve never written a piece of software before, start with a programming
course or read a beginner’s book about programming first. (Learn to Program,
Second Edition [Pin09] is a good starting point.) Then, learn to program in C
with The C Programming Language [KR98] or in C++ with The C++ Programming
Language [Str00].

What’s in This Book
This book consists of three parts (“Getting Started with Arduino,” “Eleven
Arduino Projects,” and the appendixes). In the first part, you’ll learn all the
basics you need to build the projects in the second part, so read the chapters
in order and do all the exercises. The chapters in the second part also build
on each other, reusing techniques and code from earlier chapters.

There’s one exception, though: in this book you’ll create several Google Chrome
apps that connect your web browser to Arduino. Appendix 4, Controlling the
Arduino with a Browser, on page 267, explains in detail how Chrome apps
work, so you should read it after you’ve read Chapter 4, Building a Morse
Code Generator Library, on page 61.

Here’s a short walkthrough:

• The book starts with the basics of Arduino development. You’ll learn how
to use the integrated development environment (IDE) and how to compile
and upload programs. You’ll quickly build your first project—electronic
dice—that shows you how to work with basic parts such as LEDs, buttons,
and resistors. By implementing a Morse code generator, you’ll see how
easy it is to create your own Arduino libraries.

• Then you’ll learn how to work with analog and digital sensors. You’ll use
a temperature sensor and an ultrasonic sensor to build a very accurate

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

digital metering ruler. Then you’ll use a three-axis accelerometer to build
your own motion-sensing game controller and a cool breakout game clone.

• At this point you’ve output data mostly using some LEDs and the Arduino’s
serial port. Now you’ll connect the Arduino to an actual TV set and gener-
ate your own video signals. You’ll create a graphical thermometer that
you can display on the TV set in your living room.

• In electronics, you don’t necessarily have to build gadgets yourself. You
can also tinker with existing hardware, and you’ll see how easy it is to
take full control of Nintendo’s Wii Nunchuk so you can use it in your own
applications. Soon, you’ll have everything you need to build your own
video game console.

• The Arduino does not have to work in isolation, and it works great with
different networking technologies. You’ll connect the Arduino to the
Internet in various ways, and you’ll learn how to send Twitter messages
and emails. You’ll build a burglar alarm that sends you an email whenever
someone is moving in your living room during your absence.

• Using a Nunchuk to control applications or devices is handy, but often
it’s more convenient to have a wireless remote control. So, you’ll learn
how to build your own universal remote control that you can even control
using a web browser.

• Finally, you’ll work with motors by creating a fun device for your next
software project. You can connect it to your continuous integration system,
so whenever the build fails, it will move an arrow to point to the name of
the developer who is responsible.

• In the appendixes, you’ll learn about the basics of electricity and soldering.
You’ll also find advanced information about programming a serial port
and programming the Arduino in general. And you’ll find an appendix
that explains how to control the Arduino using a web browser.

Every chapter starts with a detailed list of all the parts and tools you need to
build the chapter’s projects. All chapters contain lots of photos and diagrams
showing how everything fits together. You’ll get inspired by descriptions of
real-world Arduino projects in sidebars throughout the book.

Things won’t always work out as expected, and debugging circuits can be a
challenging task. So in every chapter, you’ll find a “What If It Doesn’t Work?”
section that explains the most common problems and their solutions.

report erratum • discuss

What’s in This Book • xv

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Before you read the solutions in the “What If It Doesn’t Work?” sections,
though, try to solve the problems yourself, because that’s the most effective
way to learn. In the unlikely case that you don’t run into any problems, you’ll
find a list of exercises at the end of every chapter to build your skills.

Arduino Uno and the Arduino Platform
After releasing several Arduino boards and Arduino IDE versions, the Arduino
team decided to specify a version 1.0 of the platform. Arduino’s version
numbering was counterintuitive before. At the beginning of the project the
developers increased the version number by 1 with each new release. They
did that up to number 23, and then they decided to use 1.0 as the version
number for the next release. That means Arduino 1.0 is more recent than
Arduino 23.

Arduino 1.0, released at the end of 2011, has since been the reference point
for all developments. The Arduino developers have also released the Arduino
Uno board, and they’ve continued to improve the IDE and its supporting
libraries.

In parallel, the Arduino team has created more Arduino boards, such as the
Arduino Due,2 the Arduino Leonardo,3 and the Arduino Yún.4 These boards
either have more powerful microcontrollers or come with additional hardware,
such as a Wi-Fi module.

Most of the new boards use a different processor architecture designed by
ARM. This architecture isn’t compatible with the architecture of the older
board’s AVR processors. To overcome this gap, the Arduino team started to
develop version 1.5.x of the Arduino IDE in parallel with 1.0.x. This develop-
ment led to version 1.6.0, which supports the different processor architectures
transparently.

In addition to all that, there’s a separate IDE for the Arduino Galileo.5 This
board was created by Intel and is compatible with the Arduino.

This book is current for versions 1.0.6 and 1.6.0 of the Arduino platform and
up to date for the Arduino Uno board. Most of the projects will also work on
other recent boards, such as the Leonardo or the Due. They will also work

2. http://arduino.cc/en/Main/ArduinoBoardDue
3. http://arduino.cc/en/Main/ArduinoBoardLeonardo
4. http://arduino.cc/en/Main/ArduinoBoardYun
5. http://arduino.cc/en/ArduinoCertified/IntelGalileo

Preface • xvi

report erratum • discuss

http://arduino.cc/en/Main/ArduinoBoardDue
http://arduino.cc/en/Main/ArduinoBoardLeonardo
http://arduino.cc/en/Main/ArduinoBoardYun
http://arduino.cc/en/ArduinoCertified/IntelGalileo
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

on older Arduino boards, such as the Duemilanove or Diecimila. All code in
this book has been tested with Arduino 1.0.6 and 1.6.0.

Code Examples and Conventions
Although this is a book about open-source hardware and electronics, you will
find a lot of code examples. We need them to bring the hardware to life and
make it do what we want it to do.

We’ll use C/C++ for all programs that will eventually run on the Arduino. For
applications running on our PC, we’ll mainly use JavaScript and Processing.6

In Serial Communication Using Various Languages, on page 255, you’ll also
learn how to use several other programming languages to communicate with
an Arduino.

Online Resources
This book has its own web page at http://pragprog.com/book/msard2 where you can
download the code for all examples. (If you have the ebook version of this
book, clicking the little gray box above each code example downloads that
source file directly.) You can also participate in a discussion forum and meet
other readers and me. If you find bugs, typos, or other annoyances, please
let me and the world know about them on the book’s errata page.7

On the web page you will also find a link to a Flickr8 photo set. It contains
all the book’s photos in high resolution. There you can also see photos of
reader projects, and we’d really like to see photos of your projects, too!

Let’s get started!

6. http://processing.org
7. http://www.pragprog.com/book/msard2/errata
8. http://flickr.com

report erratum • discuss

Code Examples and Conventions • xvii

http://pragprog.com/book/msard2
http://processing.org
http://www.pragprog.com/book/msard2/errata
http://flickr.com
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The Parts You Need
Here’s a list of the parts you need to work through all the projects in this
book. In addition, each chapter lists the parts you’ll need for that chapter’s
projects, so you can try projects chapter by chapter without buying all the
components at once. Although there appears to be a lot of components here,
they’re all fairly inexpensive, and you can buy all the parts you need for all
of the projects in this book for about $200.

Starter Packs
Many online shops sell Arduino components and electronic parts. Some of
the best are Maker Shed1 and Adafruit.2 They have awesome starter packs,
and I strongly recommend buying one of these.

At the time of this writing, the best and cheapest solution is to buy the Adafruit
Experimentation Kit for Arduino (product ID 170). It contains many of the
parts you need to build the book’s examples, as well as many more useful
parts that you can use for your own side projects. Check the current contents
of the kit, but usually you have to buy the following parts separately:

• Parallax PING))) sensor
• ADXL335 accelerometer breakout board
• 6-pin 0.1-inch standard header
• Nintendo Nunchuk controller
• A passive infrared sensor
• An infrared LED
• An infrared receiver
• An Ethernet shield
• A Proto shield
• An RCA (composite video) cable

1. http://makershed.com
2. http://adafruit.com

report erratum • discuss

http://makershed.com
http://adafruit.com
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

All shops constantly improve their starter packs, so it’s a good idea to scan
their online catalogs carefully.

Complete Parts List
If you prefer to buy parts piece by piece (or chapter by chapter) rather than
in a starter pack, here is a list of all the parts used in the book. Each chapter
also has a parts list and a photo with all parts needed for that chapter. Sug-
gested websites where you can buy the parts are listed here for your conve-
nience, but many of these parts are available elsewhere also, so feel free to
shop around.

Good shops for buying individual components parts are Digi-Key,3 SparkFun,4

and Mouser.5 Over the years Amazon6 has become an excellent shop for
electronic parts, too.

• An Arduino board, such as the Uno, available from Adafruit or Maker
Shed.

• A USB cable. Depending on the Arduino board you’re using, you will either
need a standard A-B cable or a standard A-micro-B cable. You might
already have a few. If not, you can order it at Amazon, for example.

• A half-size breadboard from Maker Shed (search for breadboard) or from
Adafruit (product ID 64).

• Three LEDs. (You need four additional ones for an optional exercise.)
Buying LEDs one at a time isn’t too useful; a better idea is to buy a pack
of 20 or more. Search for LED pack at any of the online shops mentioned
in this chapter.

• One 100Ω resistor, one 330Ω resistor, two 10kΩ resistors, and three 1kΩ
resistors. It’s also not too useful to buy single resistors; buy a value pack,
such as catalog number 10969 from SparkFun.

• Two pushbuttons. Don’t buy a single button switch; buy at least four
instead, available at Digi-Key (part number 450-1650-ND) or Mouser (101-
TS6111T1602-EV).

• Some wires, preferably breadboard jumper wires. You can buy them at
Maker Shed (product code MKSEEED3) or Adafruit (product ID 153).

3. http://digikey.com
4. http://sparkfun.com
5. http://www.mouser.com
6. http://amazon.com

The Parts You Need • xx

report erratum • discuss

http://digikey.com
http://sparkfun.com
http://www.mouser.com
http://amazon.com
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• A Parallax PING))) sensor (product code MKPX5) from Maker Shed.

• A passive infrared sensor (product ID 189) from Adafruit.

• A TMP36 temperature sensor from Analog Devices.7 You can get it from
Adafruit (product ID 165).

• An ADXL335 accelerometer breakout board. You can buy it at Adafruit
(product ID 163).

• A 6-pin 0.1-inch standard header (included if you order the ADXL335
from Adafruit). Alternatively, you can order from SparkFun (search for
breakaway headers). Usually, you can only buy strips that have more
pins. In this case, you have to cut it accordingly.

• An Arduino Proto shield from Adafruit (product ID 2077). You’ll also need
a tiny breadboard (product ID 65 at Adafruit). The Proto shield is optional,
but I highly recommend it, especially for building the motion-sensing
game controller. Note that this shield comes as a kit, so you have to solder
it yourself.

• A Nintendo Nunchuk controller. You can buy it at nearly every toy store
or at http://www.amazon.com/, for example.

• An Arduino Ethernet shield (product ID 201) from Adafruit.

• An infrared sensor, such as the TSOP38238. You can buy it a Adafruit
(product ID 157) or Digi-Key (search for TSOP38238).

• An infrared LED. You can get it from SparkFun (search for infrared LED)
or from Adafruit (product ID 387).

• An RCA (composite video) cable. You can get it at Adafruit (product ID
863), for example.

• A 5V servo motor, such as the Hitec HS-322HD or the Vigor Hextronik.
You can get one from Adafruit (product id 155) or SparkFun. Search for
standard servos with an operating voltage of 4.8V–6V.

For some of the exercises, you’ll need some optional parts:

• A piezo speaker or buzzer. Search for piezo buzzer at Maker Shed (product
code MSPT01) or get it from Adafruit (product ID 160).

7. http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html

report erratum • discuss

Complete Parts List • xxi

http://www.amazon.com/
http://www.analog.com/en/sensors/digital-temperature-sensors/tmp36/products/product.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

For the soldering tutorial, you need the following things:

• A 25W–30W soldering iron with a tip (preferably 1/16-inch) and a soldering
stand.

• Standard 60/40 solder (rosin-core) spool for electronics work. It should
have a 0.031-inch diameter.

• A sponge.

You can find these things in every electronics store, and many have soldering
kits for beginners that contain some useful additional tools. Take a look at
Adafruit (product ID 136) or Maker Shed (search for Soldering Starter Kit).

The Parts You Need • xxii

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Part I

Getting Started with Arduino

CHAPTER 1

Welcome to the Arduino
The Arduino was originally built for designers and artists—people with little
technical expertise. Even if they didn’t have programming experience, the
Arduino enabled them to create sophisticated design prototypes and some
amazing interactive artwork. So, it should come as no surprise that the first
steps with the Arduino are very easy, even more so for people with a strong
technical background.

But it’s still important to get the basics right. You’ll get the most out of
working with the Arduino if you familiarize yourself with the Arduino board
itself, with its development environment, and with techniques such as serial
communication.

One thing to understand before getting started is physical computing. If you
have worked with computers before, you might wonder what this means. After
all, computers are physical objects, and they accept input from physical
keyboards and mice. They output sound and video to physical speakers and
displays. So, isn’t all computing physical computing in the end?

In principle, regular computing is a subset of physical computing: keyboard
and mouse are sensors for real-world inputs, and displays or printers are
actuators. But controlling special sensors and actuators using a regular
computer is very difficult. Using an Arduino, it’s a piece of cake to control
sophisticated and sometimes even weird devices. In the rest of this book,
you’ll learn how, and in this chapter you’ll get started with physical computing
by learning how to control the Arduino, what tools you need, and how to
install and configure them. Then we’ll quickly get to the fun part: you’ll
develop your first program for the Arduino.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. An Arduino board, such as the Uno, Duemilanove, or Diecimila.

2. A USB cable to connect the Arduino to your computer.

3. The Arduino IDE (see Installing the Arduino IDE, on page 10). You will
need it in every chapter, so after this chapter I’ll no longer mention it
explicitly.

You’ll find photos such as this in most of the following chapters. The numbers
in the photo correspond to the numbers in the parts list. In later chapters
the photos do not show standard parts, such as the Arduino board or a USB
cable.

What Exactly Is an Arduino?
Beginners often get confused when they discover the Arduino project. When
looking for the Arduino, they hear and read strange names such as Uno,
Duemilanove, Diecimila, LilyPad, or Seeeduino. The problem is that there is
no such thing as “the Arduino.”

A couple of years ago, the Arduino team designed a microcontroller board
and released it under an open-source license. You could buy fully assembled

Chapter 1. Welcome to the Arduino • 4

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

boards in a few electronics shops, but people interested in electronics could
also download its schematic1 and build it themselves.

Over the years, the Arduino team improved the board’s design and released
several new versions. They usually had Italian names, such as Uno, Duemi-
lanove, or Diecimila; you can find online a list of all boards ever created by
the Arduino team.2

Here’s a small selection of Arduinos. They may differ in their appearance, but
they have a lot in common, and you can program them all with the same tools
and libraries.

Although they’re the same in principle, they differ in some details. The Arduino
Due3 has many more IO pins than most of the other Arduinos and uses a
powerful 32-bit ARM core microcontroller, while the Arduino Nano4 was
designed to be used on a breadboard, so it doesn’t have any sockets. From
my experience, beginners should start with one of the “standard” boards—that
is, with an Uno, for example.

1. http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
2. See http://arduino.cc/en/Main/Boards and http://arduino.cc/en/Main/Products.
3. http://arduino.cc/en/Main/ArduinoBoardDue
4. http://arduino.cc/en/Main/ArduinoBoardNano

report erratum • discuss

What Exactly Is an Arduino? • 5

http://arduino.cc/en/uploads/Main/arduino-uno-schematic.pdf
http://arduino.cc/en/Main/Boards
http://arduino.cc/en/Main/Products
http://arduino.cc/en/Main/ArduinoBoardDue
http://arduino.cc/en/Main/ArduinoBoardNano
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The Arduino team didn’t only constantly improve the hardware design, they
also invented new designs for special purposes. For example, they created
the Arduino LilyPad5 to embed a microcontroller board into textiles. You can
use it to build interactive T-shirts.

In addition to the official boards, you can find countless Arduino clones on
the Web. Everybody is allowed to use and change the original board design,
and many people created their very own version of Arduino-compatible boards.
Among many others, you can find the Freeduino, Seeeduino, Boarduino, and
the amazing Paperduino,6 an Arduino clone without a printed circuit board.
All of its parts are attached to an ordinary piece of paper.

Arduino is a registered trademark—only the official boards are named
“Arduino”—so clones usually have names ending with “duino.” You can use
every clone that is fully compatible with the original Arduino to build all of
the book’s projects.

Exploring the Arduino Board

The photo shows an Arduino Uno board and its most important parts. I’ll
explain them one by one. Let’s start with the USB connector. To connect an
Arduino to your computer, you just need a USB cable. The type of the USB
cable depends on the type of Arduino board you’re using. The Arduino Uno

5. http://arduino.cc/en/Main/ArduinoBoardLilyPad
6. http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/

Chapter 1. Welcome to the Arduino • 6

report erratum • discuss

http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

comes with the big standard-B plug, while other boards, such as the Arduino
Leonardo or the Arduino Due, have the small micro-B plugs.

You can use the USB connection for various purposes:

• Upload new software to the board. (You’ll see how to do this in Compiling
and Uploading Programs, on page 19.)

• Communicate with the Arduino board and your computer. (You’ll learn
that in Using Serial Ports, on page 28.)

• Supply the Arduino board with power.

As an electronic device, the Arduino needs power. One way to power it is to
connect it to a computer’s USB port, but that isn’t a good solution in some
cases. Some projects don’t necessarily need a computer, and it would be
overkill to use a whole computer just to power the Arduino. Also, the USB
port delivers only 5 volts, and sometimes you need more.

Figure 1—A typical AC adapter.

In these situations, the best solu-
tion usually is an AC adapter
supplying 9 volts. (The recommend-
ed range is 7V to 12V.)7 You need
an adapter with a 2.1mm barrel
tip and a positive center. (You
don’t need to understand what
that means; just ask for it in your
local electronics store.) Plug it into
the Arduino’s power jack, and it
will start immediately, even if it
isn’t connected to a computer. By the way, even if you connect the Arduino
to a USB port, it will use the external power supply if available.

Please note that older versions of the Arduino board (Arduino NG and Diecim-
ila) don’t switch automatically between an external power supply and a USB
supply. They come with a power selection jumper labeled PWR_SEL, and you
manually have to set it to EXT or USB, respectively. (See Figure 2, Older
Arduinos have a power source selection jumper, on page 8.)

Now you know two ways to supply the Arduino with power. But the Arduino
isn’t greedy and happily shares its power with other devices. At the bottom
of the board shown in Exploring the Arduino Board, on page 6, you can see

7. http://www.arduino.cc/playground/Learning/WhatAdapter

report erratum • discuss

Exploring the Arduino Board • 7

http://www.arduino.cc/playground/Learning/WhatAdapter
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Jumper

Figure 2—Older Arduinos have a power source selection jumper.

several sockets (sometimes I’ll also call them pins, because internally they
are connected to pins in the microcontroller) related to power supply:

• Using the pins labeled 3V3 and 5V, you can power external devices con-
nected to the Arduino with 3.3 volts or 5 volts.

• Two ground pins labeled GND allow your external devices to share a
common ground with the Arduino.

• Some projects need to be portable, so they’ll use a portable power supply,
such as batteries. You connect an external power source, such as a battery
pack, to the Vin and GND sockets.

If you connect an AC adapter to the Arduino’s power jack, you can access the
adapter’s voltage through the Vin pin.

On the lower right of the board, you see six analog input pins named A0–A5.
You can use them to connect analog sensors to the Arduino. They take sensor
data and convert it into a number between 0 and 1023. In Chapter 5, Sensing
the World Around Us, on page 77, we’ll use them to connect a temperature
sensor to the Arduino.

At the board’s top are 14 digital IO pins named D0–D13. Depending on your
needs, you can use these pins for both digital input and digital output, so
you can read the state of a pushbutton or switch to turn on and off an LED.
(We’ll do this in Working with Buttons, on page 48.) Six of them (D3, D5, D6,
D9, D10, and D11) can also act as analog output pins. In this mode, they
convert values from 0 to 255 into analog voltages.

Chapter 1. Welcome to the Arduino • 8

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Analog and Digital Signals

Nearly all physical processes are analog. Whenever you observe a natural phenomenon,
such as electricity or sound, you’re actually receiving an analog signal. One of the
most important properties of these analog signals is that they are continuous. For
every given point in time, you can measure the strength of the signal, and in principle
you could register even the tiniest variation of the signal.

But although we live in an analog world, we are also living in the digital age. When
the first computers were built a few decades ago, people quickly realized that it’s
much easier to work with real-world information when it’s represented as numbers
and not as an analog signal, such as voltage or volume. For example, it’s much easier
to manipulate sounds using a computer when the sound waves are stored as a
sequence of numbers. Every number in this sequence could represent the signal’s
loudness at a certain point in time.

So instead of storing the complete analog signal (as is done on records), we measure
the signal only at certain points in time (see the following figure). We call this process
sampling, and the values we store are called samples. The frequency we use to
determine new samples is called the sampling rate. For an audio CD, the sampling
rate is 44.1 kHz: we gather 44,100 samples per second.

We also have to limit the samples to a certain range. On an audio CD, every sample
uses 16 bits. In the following figure, the range is denoted by two dashed lines, and
we had to cut off a peak at the beginning of the signal.

70 1 2 3 4 5 6

Although you can connect both analog and digital devices to the Arduino, you usually
don’t have to think much about it. The Arduino automatically performs the conversion
from analog to digital for you.

report erratum • discuss

Exploring the Arduino Board • 9

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

All of these pins are connected to a microcontroller, which combines a CPU
with some peripheral functions, such as IO channels. Many different types
of microcontrollers are available, but the majority of Arduinos usually come
with an ATmega328, an 8-bit microcontroller produced by a company named
Atmel. Still there are Arduino models—for example, the Arduino Mega or the
Arduino Due—that use more powerful microcontrollers.

Although modern computers load programs from a hard drive, microcontrollers
usually have to be programmed. That means you have to load your software
into the microcontroller via a cable, and once the program has been uploaded,
it stays in the microcontroller until it gets overwritten with a new program.
Whenever you supply power to the Arduino, the program currently stored in
its microcontroller gets executed automatically. Sometimes you want the
Arduino to start right from the beginning. With the reset button on the right
side of the board, you can do that. If you press it, everything gets reinitialized,
and the program stored in the microcontroller starts again. (We’ll use it in
First Version of a Binary Die, on page 45.)

On most Arduino boards you’ll also find a couple of LEDs. You’ll learn more
about them in Hello, World!, on page 16.

Installing the Arduino IDE
To make it as easy as possible to get started with the Arduino, the developers
have created a simple but useful integrated development environment (IDE).
It runs on many different operating systems. Before you can create your first
projects, you have to install it.

Important note: at the time of this writing, two different versions of the IDE
are available (1.0.6 and 1.6.0).8 Chances are good that the 1.0.x branch of
the Arduino IDE will no longer be maintained in the future. So, you should
use 1.6.x where possible and use 1.0.x only if you need to use libraries that
don’t work on 1.6.x yet. The following instructions refer to the 1.6.0 version.

Installing the Arduino IDE on Windows
The Arduino IDE runs on all the latest versions of Microsoft Windows, such
as Windows 8.1 and Windows 7. The software comes in two flavors: as a
Windows installer or as a self-contained zip archive. Check the Arduino’s
download page9 for the latest version of either one.

8. There’s even one more for the Arduino Galileo at https://communities.intel.com/docs/DOC-22226.
9. http://arduino.cc/en/Main/Software

Chapter 1. Welcome to the Arduino • 10

report erratum • discuss

https://communities.intel.com/docs/DOC-22226
http://arduino.cc/en/Main/Software
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

If you have administrative privileges on your machine, use the installer
because it installs not only the IDE, but also all the drivers you need. In this
case you usually don’t need anything else and can use the IDE right away.

If you don’t have administrative privileges, download the zip archive and
extract it to a location of your choice. Before you first start the IDE, you must
install drivers for the Arduino’s USB port. This process depends on the Arduino
board you’re using and on your flavor of Windows.

Installing the Drivers for Current Arduino Boards

To install drivers for recent
boards, such as the Arduino
Uno, plug the Arduino into a
USB port first to start the auto-
matic driver installation process.
This process will likely fail, and
you’ll have to open the system
Control Panel and start the
Device Manager. (You can find it
under System and Security.)10 In the
Ports (COM & LPT) section, you’ll
probably find an entry named
Arduino Uno (COMxx).

If you can’t find that entry,
search for Unknown Device in the
Other Devices menu—Figure 3,
Sometimes the Arduino isn't recog-
nized, on page 12.

Right-click the entry belonging to the Arduino board and choose Update Driver
Software. Select the Browse My Computer for Driver Software option. Go to the drivers
folder of the archive you’ve extracted and select the arduino.inf file. (See Figure
4, The content of the drivers folder, on page 12.) In older versions of the IDE
the file was named Arduino Uno.inf.

After you’ve installed the driver, you can start the Arduino IDE and work with
the board. (If you’re running Windows 8.x, you have to disable some protection
mechanisms before you install the driver.)11

10. http://windows.microsoft.com/en-us/windows/open-device-manager#1TC=windows-7
11. https://learn.sparkfun.com/tutorials/installing-arduino-ide/windows

report erratum • discuss

Installing the Arduino IDE • 11

http://windows.microsoft.com/en-us/windows/open-device-manager#1TC=windows-7
https://learn.sparkfun.com/tutorials/installing-arduino-ide/windows
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 3—Sometimes the Arduino isn’t recognized.

Figure 4—The content of the drivers folder

Chapter 1. Welcome to the Arduino • 12

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Installing the Drivers for Older Arduino Boards

Driver installation for older boards like the Duemilanove, Diecimila, or Nano
is a bit different. Still, you have to plug in the board first.

On Windows Vista, driver installation usually happens automatically. Lean
back and watch the hardware wizard’s messages pass by until it says you
can use the newly installed USB hardware.

Windows 8.x, Windows 7, and Windows XP may not find the drivers on
Microsoft’s update sites automatically. Sooner or later, the hardware wizard
asks you for the path to the right drivers after you have told it to skip auto-
matic driver installation from the Internet. Depending on your Arduino board,
you have to point it to the right location in the Arduino installation directo-
ry—that is the drivers/FTDI USB Drivers directory.

After the drivers have been installed, you can start the Arduino executable from
the archive’s main directory by double-clicking it.

Please note that the USB drivers don’t change as often as the Arduino IDE.
Whenever you install a new version of the IDE, check whether you have to
install new drivers, too. Usually it isn’t necessary.

Installing the Arduino IDE on Mac OS X
The Arduino IDE is available as a zip file for Mac OS X.12 The IDE depends
on the Java Virtual Machine, and at the time of this writing it’s available for
Java 6 (recommended) and Java 7 (experimental). Download it, double-click
it, and drag the Arduino icon to your Applications folder. If you hadn’t installed
Java already, Mac OS X will ask you for permission to install it.

If you’re using an Arduino Uno or an Arduino Mega 2560, you are done and
can start the IDE. Before you can use the IDE with an older Arduino, such
as the Duemilanove, Diecimila, or Nano, you have to install drivers for the
Arduino’s serial port. You can find the latest version online.13 Download the
package for your platform (it usually has a name such as FTDIUSBSerialDriv-
er_10_4_10_5_10_6.mpkg), double-click it, and follow the installation instructions
on the screen.

When installing a new version of the Arduino IDE, you usually don’t have to
install the drivers again (only when more recent drivers are available).

12. http://arduino.cc/en/Main/Software
13. http://www.ftdichip.com/Drivers/VCP.htm

report erratum • discuss

Installing the Arduino IDE • 13

http://arduino.cc/en/Main/Software
http://www.ftdichip.com/Drivers/VCP.htm
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Installing the Arduino IDE on Linux
Installation procedures on Linux distributions are still not very homogeneous.
The Arduino IDE works fine on nearly all modern Linux versions, but the
installation process differs from distribution to distribution. Also, you often
have to install additional software (the Java Virtual Machine, for example)
that comes preinstalled with other operating systems.

It’s best to check the official documentation14 and look up the instructions
for your preferred system.

Now that the drivers and IDE are installed, let’s see what it has to offer.

Meeting the Arduino IDE
Compared to IDEs such as Eclipse, Xcode, or Microsoft Visual Studio, the
Arduino IDE is simple. It mainly consists of an editor, a compiler, a loader,
and a serial monitor. (See Figure 5, The Arduino IDE is well organized, on
page 15 or, even better, start the IDE on your computer.)

It has no advanced features such as a debugger or code completion. You can
change only a few preferences, and as a Java application it does not fully
integrate into the Mac desktop. It’s still usable, though, and even has decent
support for project management.

The image that follows shows the IDE’s toolbar, which gives you instant access
to the functions you’ll need most:

Verify New

Open

Save

Upload

Serial Monitor

• With the Verify button, you can compile the program that’s currently in
the editor. So, in some respects, “Verify” is a misnomer, because clicking
the button doesn’t only verify the program syntactically, it also turns the
program into a representation suitable for the Arduino board. You can
invoke this function using the DR keyboard shortcut on a Mac or Ctrl-R
on all other systems.

14. http://www.arduino.cc/playground/Learning/Linux

Chapter 1. Welcome to the Arduino • 14

report erratum • discuss

http://www.arduino.cc/playground/Learning/Linux
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 5—The Arduino IDE is well organized.

• When you click the Upload button (DU or Ctrl-U), the IDE compiles the
current program and uploads it to the Arduino board you’ve chosen in
the IDE’s Tools > Serial Port menu. (You’ll learn more about this in Com-
piling and Uploading Programs, on page 19.)

• The New button (DN or Ctrl-N) creates a new program by emptying the
content of the current editor window. Before that happens, the IDE gives
you the opportunity to store all unsaved changes.

• Open (DO or Ctrl-O) opens an existing program from the file system.

• Save (DS or Ctrl-S) saves the current program.

• The Arduino can communicate with a computer via a serial connection.
Clicking the Serial Monitor button (BDM or Ctrl-Shift-M) opens a serial
monitor window that allows you to watch the data sent by an Arduino
and also to send data back.

report erratum • discuss

Meeting the Arduino IDE • 15

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Although using the IDE is easy, you might run into problems or want to look
up something special. In such cases, take a look at the Help menu. It points
to many useful resources at the Arduino’s website that provide not only quick
solutions to all typical problems, but also reference materials and tutorials.

Hello, World!
To get familiar with the IDE’s most important features, we’ll create a simple
program that makes an light-emitting diode (LED) blink. An LED is a cheap
and efficient light source, and the Arduino already comes with several LEDs.
One LED shows whether the Arduino is currently powered, and two other
LEDs blink when data is transmitted or received via a serial connection.

In our first little project, we’ll make the Arduino’s status LED blink. The status
LED is connected to digital IO pin 13. Digital pins act as a kind of switch and
can be in one of two states: HIGH or LOW. If set to HIGH, the output pin is
set to 5 volts, causing a current to flow through the LED so it lights up. If set
back to LOW, the current flow stops, and the LED turns off. You don’t need
to know exactly how electricity works at the moment, but if you’re curious,
take a look at Current, Voltage, and Resistance, on page 239.

Open the IDE and enter the following code in the editor:

Welcome/HelloWorld/HelloWorld.ino
const unsigned int LED_PIN = 13;Line 1

const unsigned int PAUSE = 500;-

-

void setup() {-

pinMode(LED_PIN, OUTPUT);5

}-

-

void loop() {-

digitalWrite(LED_PIN, HIGH);-

delay(PAUSE);10

digitalWrite(LED_PIN, LOW);-

delay(PAUSE);-

}-

Chapter 1. Welcome to the Arduino • 16

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Welcome/HelloWorld/HelloWorld.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Let’s see how this works and dissect the program’s source code piece by piece.
In the first two lines, we define two unsigned int constants using the const key-
word. LED_PIN refers to the number of the digital IO pin we’re using, and PAUSE
defines the length of the blink period in milliseconds.

Every Arduino program needs a function named setup, and ours starts in line
4. A function definition always adheres to the following scheme:

<return value type> <function name> '(' <list of parameters> ')'

In our case the function’s name is setup, and its return value type is void: it
returns nothing. setup doesn’t expect any arguments, so we left the parameter
list empty. Before we continue with the dissection of our program, you should
learn more about the Arduino’s data types.

Arduino Data Types
Every piece of data you store in an Arduino program needs a type. Depending
on your needs, you can choose from the following:

• boolean values take up one byte of memory and can be true or false.

• char variables take up one byte of memory and store numbers from -128
to 127. These numbers usually represent characters encoded in ASCII;
that is, in the following example, c1 and c2 have the same value:

char c1 = 'A';
char c2 = 65;

Note that you have to use single quotes for char literals.

• byte variables use one byte and store values from 0 to 255.

• An int variable needs two bytes of memory; you can use it to store numbers
from -32,768 to 32,767. Its unsigned equivalent unsigned int also consumes
two bytes of memory but stores numbers from 0 to 65,535.

• For bigger numbers, use long. It consumes four bytes of memory and stores
values from -2,147,483,648 to 2,147,483,647. The unsigned variant
unsigned long also needs four bytes but ranges from 0 to 4,294,967,295.

• float and double are the same at the moment on most Arduino boards, and
you can use these types for storing floating-point numbers. Both use four
bytes of memory and are able to store values from -3.4028235E+38 to
3.4028235E+38. On the Arduino Due, double values are more accurate
and occupy eight bytes of memory.

report erratum • discuss

Hello, World! • 17

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• You need void only for function declarations. It denotes that a function
doesn’t return a value.

• Arrays store collections of values having the same type:

int values[2]; // A two-element array
values[0] = 42; // Set the first element
values[1] = -42; // Set the second element
int more_values[] = { 42, -42 };
int first = more_values[0]; // first == 42

In the preceding example, the arrays values and more_values contain the
same elements. We have used only two different ways of initializing an
array. Note that the array index starts at 0, and keep in mind that
uninitialized array elements contain unreliable values.

• A string is an array of char values. The Arduino environment supports the
creation of strings with some syntactic sugar—all these declarations create
strings with the same contents.

char string1[8] = { 'A', 'r', 'd', 'u', 'i', 'n', 'o', '\0' };
char string2[] = "Arduino";
char string3[8] = "Arduino";
char string4[] = { 65, 114, 100, 117, 105, 110, 111, 0 };

Strings should always be terminated by a zero byte. When you use double
quotes to create a string, the zero byte will be added automatically. That’s
why you have to add one byte to the size of the corresponding array.

In Emailing Directly from an Arduino, on page 189, you’ll learn how to use the
Arduino’s String class. It makes working with strings safer and more convenient.

Arduino Functions
Arduino calls setup once when it boots, and we use it in our “HelloWorld”
example in Hello, World!, on page 16, for initializing the Arduino board and
all the hardware we have connected to it. We use the pinMode method to turn
pin 13 into an output pin. This ensures the pin can provide enough current
to light up an LED. The default state of a pin is INPUT, and both INPUT and
OUTPUT are predefined constants.15

Another mandatory function named loop begins in line 8. It contains the main
logic of a program, and the Arduino calls it in an infinite loop. Our program’s
main logic has to turn on the LED connected to pin 13 first. To do this, we
use digitalWrite and pass it the number of our pin and the constant HIGH. This

15. See http://arduino.cc/en/Tutorial/DigitalPins for the official documentation.

Chapter 1. Welcome to the Arduino • 18

report erratum • discuss

http://arduino.cc/en/Tutorial/DigitalPins
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

means the pin will output 5 volts until further notice, and the LED connected
to the pin will light up.

The program then calls delay and waits for 500 milliseconds doing nothing.
During this pause, pin 13 remains in HIGH state, and the LED continues to
burn. The LED is eventually turned off when we set the pin’s state back to
LOW using digitalWrite again. We wait another 500 milliseconds, and then the
loop function ends. The Arduino starts it again, and the LED blinks.

In the next section, you’ll learn how to bring the program to life and transfer
it to the Arduino.

Compiling and Uploading Programs
Before you compile and upload a program to the Arduino, you have to config-
ure two things in the IDE: the type of Arduino you’re using and the serial port
your Arduino is connected to. Since Arduino 1.6.0, the IDE tries to identify
all Arduino boards that are connected to your computer automatically. This
feature works quite well, but it also fails sometimes. So, you need to learn
how to determine the type of your Arduino board and the name of the serial
port it is connected to.

Identifying the Arduino type is easy, because it is printed on the board. Pop-
ular types are Uno, Duemilanove, Diecimila, Nano, Mega, Mini, NG, BT, Lily-
Pad, Pro, or Pro Mini. In some cases, you also have to check what microcon-
troller your Arduino uses—most have an ATmega328. You can find the
microcontroller type printed on the microcontroller itself. When you have
identified the exact type of your Arduino, choose it from the Tools > Board
menu.

Now you have to choose the serial port your Arduino is connected to from the
Tools > Serial Port menu. On Mac OS X, the name of the serial port usually
starts with /dev/tty.usbserial or /dev/tty.usbmodem. (On my MacBook Pro, it’s
/dev/tty.usbmodem24321.) On Linux systems, it should be /dev/ttyUSB0, /dev/ttyUSB1,
or something similar, depending on the number of USB ports your computer
has.

On Windows systems, you have to use the Device Manager to find out the
right serial port. In the Device Manager, look for USB Serial Port below the
Ports (COM & LPT) menu entry. (See Installing the Drivers for Current Arduino
Boards, on page 11) Usually the port is named COM1, COM2, or something
similar.

report erratum • discuss

Compiling and Uploading Programs • 19

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

After you have chosen the right serial port, click the Verify button, and you
should see the following output in the IDE’s message area (the Arduino IDE
calls programs sketches):

Build options changed, rebuilding all

Sketch uses 1,030 bytes (3%) of program storage space. Maximum is 32,256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving 2,039 bytes for

local variables. Maximum is 2,048 bytes.

This means the IDE has successfully compiled the source code into 1,030
bytes of machine code that we can upload to the Arduino. If you see an error
message instead, check whether you have typed in the program correctly.
(When in doubt, download the code from the book’s website.)16 Depending on
the Arduino board you’re using, the byte maximum may differ. On an Arduino
Duemilanove, it’s usually 14336, for example. Also, the size of the sketch
might be slightly different depending on the version of the Arduino IDE.

Now click the Upload button, and after a few seconds, you should see the
following output in the message area:

Sketch uses 1,030 bytes (3%) of program storage space. Maximum is 32,256 bytes.
Global variables use 9 bytes (0%) of dynamic memory, leaving 2,039 bytes for

local variables. Maximum is 2,048 bytes.

This is exactly the same message we got after compiling the program, and it
tells us that the 1,030 bytes of machine code were transferred successfully
to the Arduino. In case of any errors, check whether you have selected the
correct Arduino type and the correct serial port in the Tools menu.

During the upload process, the TX and RX LEDs will flicker for a few seconds.
This is normal, and it happens whenever the Arduino and your computer
communicate via the serial port. When the Arduino sends information, it
turns on the TX LED. When it gets some bits, it turns on the RX LED. Because
the communication is pretty fast, the LEDs start to flicker, and you cannot
identify the transmission of a single byte. (If you can, you’re probably an
alien.)

As soon as the code has been transmitted completely, the Arduino executes
it. In our case, this means the status LED starts to blink. It turns on for half
a second, then it turns off for half a second, and so on.

16. http://www.pragprog.com/titles/msard2

Chapter 1. Welcome to the Arduino • 20

report erratum • discuss

http://www.pragprog.com/titles/msard2
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

0 V

5 V

The figure shows the activity on pin
13 while the program is running.

The pin starts in LOW state and doesn’t
output any current. We use digitalWrite
to set it to HIGH and let it output 5 volts
for 500 milliseconds. Finally, we set it back to LOW for 500 milliseconds and
repeat the whole process.

That’s it! You’ve created your first physical computing project. You’ve written
some code, and it makes the world brighter. Your very own digital version of
“fiat lux.”17

Admittedly, the status LED doesn’t look spectacular. In Chapter 3, Building
Binary Dice, on page 39, we’ll attach “real” LEDs to the Arduino.

You’ll need the theory and skills you’ve learned in this chapter for nearly every
Arduino project. In the next chapter, you’ll see how to gain more control over
LEDs, and you’ll learn how to benefit from more advanced features of the
Arduino IDE.

What If It Doesn’t Work?
Choosing the wrong serial port or Arduino type is the most common mistake
when doing the first experiments with an Arduino. If you get an error message
such as “Serial port already in use” when uploading a sketch, check whether
you have chosen the right serial port from the Tools > Serial Port menu. If you
get messages such as “Problem uploading to board” or “Programmer is not
responding,” check whether you have chosen the right Arduino board from
the Tools > Board menu.

Your Arduino programs, like all programs, will contain bugs. The compiler
will detect typos and syntax errors. Figure 6, The Arduino IDE explains syntax
errors nicely, on page 22 shows a typical error message. Instead of pinMode,
we called pinMod, and because the compiler didn’t find a function with that
name, it stopped with an error message. The Arduino IDE highlights the line,
showing the error with a yellow background, and prints a helpful error mes-
sage.

Other bugs might be more subtle, and sometimes you have to carefully study
your code and use some plain old debugging techniques. (In Debug It! Find,

17. http://en.wikipedia.org/wiki/Fiat_lux

report erratum • discuss

What If It Doesn’t Work? • 21

http://en.wikipedia.org/wiki/Fiat_lux
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 6—The Arduino IDE explains syntax errors nicely.

Repair, and Prevent Bugs in Your Code [But09], you can find plenty of useful
advice on this topic.)

Exercises
• Try different blink patterns using more pauses and vary the pause length.

(They don’t necessarily all have to be the same.) Also, experiment with
very short pauses that make the status LED blink at a high frequency.
Can you explain the effect you’re observing?

• Let the status LED output your name in Morse code.18

18. http://en.wikipedia.org/wiki/Morse_code

Chapter 1. Welcome to the Arduino • 22

report erratum • discuss

http://en.wikipedia.org/wiki/Morse_code
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 2

Creating Bigger Projects with the Arduino
For simple applications, what you learned about the Arduino IDE in the pre-
ceding chapter is sufficient. But soon your projects will get more ambitious,
and then it will be handy to split them into separate files that you can manage
as a whole. So in this chapter, you’ll learn how to stay in control of bigger
projects with the Arduino IDE.

Usually, bigger projects need not only more software, but also more hard-
ware—you will rarely use the Arduino board in isolation. You will use many
more sensors than you might imagine, and you’ll have to transmit the data
they measure back to your computer. To exchange data with the Arduino,
you’ll use its serial port. This chapter explains everything you need to know
about serial communication. To make things more tangible, you’ll learn how
to turn your computer into a very expensive light switch that lets you control
an LED using the keyboard.

What You Need
To try this chapter’s examples, you need only a few things:

1. An Arduino board, such as the Uno, Duemilanove, or Diecimila
2. A USB cable to connect the Arduino to your computer
3. An LED (optional)
4. A software serial terminal such as PuTTY (for Windows users) or screen for

Linux and Mac OS X users (optional)

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Managing Projects and Sketches
Modern software developers can choose from a variety of development tools
that automate repetitive and boring tasks. That’s also true for embedded
systems like the Arduino. You can use integrated development environments
(IDEs) to manage your programs, too. The most popular one has been created
by the Arduino team.

The Arduino IDE manages all files belonging to your project. It also provides
convenient access to all the tools you need to create the binaries that will run
on your Arduino board. Conveniently, it does so unobtrusively.

Organizing all the files belonging to a project automatically is one of the most
important features of an IDE. Under the hood, the Arduino IDE creates a
directory for every new project, storing all the project’s files in it. To add new
files to a project, click the Tabs button on the right to open the Tabs pop-up
menu, and then choose New Tab (Figure 7, The Tabs menu in action, on page
25). To add an existing file, use the Sketch > Add File menu item.

As you might have guessed from the names of the menu items, the Arduino
IDE calls projects sketches. If you create a new sketch, the IDE gives it a
name starting with sketch_. You can change the name whenever you like using
the Save As command. If you do not save a sketch explicitly, the IDE stores
it in a predefined folder you can look up in the Preferences menu. Whenever
you get lost, you can check what folder the current sketch is in using the
Sketch > Show Sketch Folder menu item.

Since Arduino 1.0, sketches have the extension ino. Older IDE versions used
pde. Arduino 1.0 still supports pde files, but it will update them to ino when
you save the sketch. (You can disable this behavior in the Preferences menu.)

Chapter 2. Creating Bigger Projects with the Arduino • 24

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 7—The Tabs menu in action

Not only can you create your own sketches using the IDE, but it also comes
with many example sketches that you can use as a basis for your own
experiments. Get to them via the File > Examples menu. Take some time to
browse through them, even if you don’t understand anything you see right
now.

Note that many libraries come with examples, too. Whenever you install a
new library (you’ll learn how to do this later), you should have a look at the
File > Examples menu again. It will probably contain new entries.

The Arduino IDE makes your life easier by choosing reasonable defaults for
many settings. But it also allows you to change most of these settings, and
you’ll see how in the next section.

report erratum • discuss

Managing Projects and Sketches • 25

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Changing Preferences
For your early projects, the IDE’s defaults might be appropriate, but sooner
or later you’ll want to change some things. As you can see in the following
figure, the IDE lets you change only a few preferences directly.

The dialog box refers to a file named preferences.txt containing more preferences.
This file is a Java properties file consisting of key/value pairs. Here you see
a few of them:

...
preproc.web_colors=true
editor.font=Monaco,plain,10
update.check=true
build.verbose=true
upload.verbose=true
...

Most of these properties control the user interface; that is, they change fonts,
colors, and so on. But they can also change the application’s behavior. You
can enable more verbose output for operations such as compiling or uploading
a sketch. Before Arduino 1.0, you had to edit preferences.txt and set both
build.verbose and upload.verbose to true to achieve this. Today, you can change the
verbose settings from the Preferences dialog box. Make sure that verbose
output is enabled for compilation and upload. Also, it’s helpful to enable the
“Display line numbers” option.

Chapter 2. Creating Bigger Projects with the Arduino • 26

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Load the blinking LED sketch from Chapter 1, Welcome to the Arduino, on
page 3, and compile it again. The output in the message panel should look
like this:

Note that the IDE updates some of the Preferences values when it shuts down.
So before you change any preferences directly in the preferences.txt file, you
have to stop the Arduino IDE.

Now that you’re familiar with the Arduino IDE, let’s do some programming.
We’ll make the Arduino talk to the outside world.

report erratum • discuss

Changing Preferences • 27

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The Arduino Programming Language

People sometimes get irritated when it comes to the language the Arduino gets pro-
grammed in. That’s mainly because the typical sample sketches look as if they were
written in a language that was exclusively designed for programming the Arduino.
But that’s not the case—it is plain old C++ (which implies that it supports C, too).

Most Arduino boards use an AVR microcontroller designed by a company named
Atmel. (Atmel says that the name AVR doesn’t stand for anything.) These microcon-
trollers are very popular, and many hardware projects use them. One reason for their
popularity is the excellent tool chain that comes with them. Based on the GNU C++
compiler tools, it is optimized for generating code for AVR microcontrollers.

That means you feed C++ code to the compiler that is not translated into machine
code for your computer, but for an AVR microcontroller. This technique is called
cross-compiling and is the usual way to program embedded devices.

Using Serial Ports
Arduino makes many stand-alone applications—projects that do not involve
any additional computers—possible. In such cases you need to connect the
Arduino to a computer once to upload the software, and after that, it needs
only a power supply. More often, people use the Arduino to enhance the
capabilities of a computer using sensors or by giving access to additional
hardware. Usually, you control external hardware via a serial port, so it is a
good idea to learn how to communicate serially with the Arduino.

Although the standards for serial communication have changed over the past
years (for example, we use USB today, and our computers no longer have
RS232 connectors), the basic working principles remain the same. In the
simplest case, we can connect two devices using only three wires: a common
ground, a line for transmitting data (TX), and one for receiving data (RX).

Device #1
GND

TX
RX

Device #2
GND
TX
RX

Serial communication might sound old-school, but it’s still the preferred way
for hardware devices to communicate. The S in USB stands for “serial”—and
when was the last time you saw a parallel port? (Perhaps this is a good time
to clean up the garage and throw out that old PC you wanted to turn into a
media center someday….)

Chapter 2. Creating Bigger Projects with the Arduino • 28

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

For uploading software, the Arduino has a serial port, and you can use it to
connect the Arduino to other devices, too. (In Compiling and Uploading Pro-
grams, on page 19, you learned how to look up the serial port your Arduino
is connected to.) In this section, you’ll use the serial port to control Arduino’s
status LED using your computer’s keyboard. The LED should be turned on
when you press 1, and it should be turned off when you press 2. Here’s all
the code you need:

Welcome/LedSwitch/LedSwitch.ino
const unsigned int LED_PIN = 13;Line 1

const unsigned int BAUD_RATE = 9600;-

-

void setup() {-

pinMode(LED_PIN, OUTPUT);5

Serial.begin(BAUD_RATE);-

}-

-

void loop() {-

if (Serial.available() > 0) {10

int command = Serial.read();-

if (command == '1') {-

digitalWrite(LED_PIN, HIGH);-

Serial.println("LED on");-

} else if (command == '2') {15

digitalWrite(LED_PIN, LOW);-

Serial.println("LED off");-

} else {-

Serial.print("Unknown command: ");-

Serial.println(command);20

}-

}-

}-

As in our previous examples, we define a constant for the pin the LED is
connected to and set it to OUTPUT mode in the setup function. In line 6, we ini-
tialize the serial port using the begin function of the Serial class, passing a baud
rate of 9600. (You can learn what a baud rate is in Learning More About
Serial Communication, on page 253.) That’s all we need to send and receive
data via the serial port in our program.

So, let’s read and interpret the data. The loop function starts by calling Serial’s
available method in line 10. available returns the number of bytes waiting on the
serial port. If any data is available, we read it using Serial.read. read returns the
first byte of incoming data if data is available and -1 otherwise.

If the byte we have read represents the character 1, we switch on the LED
and send back the message “LED on” over the serial port. We use Serial.println,

report erratum • discuss

Using Serial Ports • 29

http://media.pragprog.com/titles/msard2/code/Welcome/LedSwitch/LedSwitch.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

which adds a carriage return character (ASCII code 13) followed by a newline
(ASCII code 10) to the text.

If we receive the character 2, we switch off the LED. If we receive an unsup-
ported command, we send back a corresponding message and the command
we didn’t understand. Serial.print works exactly like Serial.println, but it doesn’t
add carriage return and newline characters to the message.

Let’s see how the program works in practice. Compile it, upload it to your
Arduino, and then switch to the serial monitor. At first glance, nothing hap-
pens. That’s because we haven’t sent a command to the Arduino yet. Make
sure the drop-down menu at the bottom of the serial monitor is set to No line
ending. Enter a 1 in the text box, and then click the Send button. Two things
should happen now: the LED is switched on, and the message “LED on”
appears in the serial monitor window (as shown in the following image). We
are controlling an LED using our computer’s keyboard!

Play around with the commands 1 and 2, and also observe what happens
when you send an unknown command. If you type in an uppercase A, the
Arduino will send back the message “Unknown command: 65.” The number
65 is the ASCII code of the letter A, and the Arduino outputs the data it got
in its most basic form. That’s the default behavior of Serial’s print method, and
you can change it by passing a format specifier to your function calls. To see
the effect, replace line 20 with the following statements:

Serial.println(command, DEC);
Serial.println(command, HEX);
Serial.println(command, OCT);
Serial.println(command, BIN);
Serial.write(command);
Serial.println();

Chapter 2. Creating Bigger Projects with the Arduino • 30

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The output looks as follows when you send the character A again:

Unknown command: 65
41
101
1000001
A

Depending on the format specifier, Serial.println automatically converts a byte
into another representation. DEC outputs a byte as a decimal number, HEX
as a hexadecimal number, and so on. Note that such an operation usually
changes the length of the data that get transmitted. The binary representation
of the single byte 65 needs 7 bytes, because it contains seven characters.
Also note that we have to use Serial.write instead of Serial.println to output a
character representation of our command value. Former versions of the
Arduino IDE had a BYTE modifier for this purpose, but it has been removed
in Arduino 1.0.

Numbering Systems
It’s an evolutionary accident that 10 is the basis for our numbering system.
If we had only four fingers on each hand, it’d be probably eight, and we’d
probably have invented computers a few centuries earlier.

For thousands of years, people have used denominational number systems,
and we represent a number like 4711 as follows:

4×103 + 7×102 + 1×101 + 1×100

This makes arithmetic operations very convenient. But when working with
computers that interpret only binary numbers, it’s often good to use number-
ing systems based on the numbers 2 (binary), 8 (octal), or 16 (hexadecimal).

The decimal number 147 can be represented in octal and hexadecimal as:

0223=3×80+2×81+2×82

0x93=3×160+9×161

In Arduino programs, you can define literals for all these numbering systems:

int decimal = 147;
int binary = B10010011;
int octal = 0223;
int hexadecimal = 0x93;

Binary numbers start with a B character, octal numbers with a 0, and hex-
adecimal numbers with 0x. Note that you can use binary literals only for
numbers from 0 to 255.

report erratum • discuss

Using Serial Ports • 31

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Using Different Serial Terminals
For trivial applications, the IDE’s serial monitor is sufficient, but you cannot
easily combine it with other applications, and it lacks some features. That
means you should have an alternative serial terminal to send data, and you
can find plenty of them for every operating system.

Serial Terminals for Windows

PuTTY1 is an excellent choice for Windows users. It is free, and it comes as
an executable that doesn’t even have to be installed. The following figure
shows how to configure it for communication on a serial port.

After you have configured PuTTY, you can open a serial connection to the
Arduino. The following screenshot shows the corresponding dialog box. Click
Open, and you’ll see an empty terminal window.

1. http://www.chiark.greenend.org.uk/~sgtatham/putty/

Chapter 2. Creating Bigger Projects with the Arduino • 32

report erratum • discuss

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Now press 1 and 2 a few times to switch on and off the LED.

report erratum • discuss

Using Serial Ports • 33

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Serial Terminals for Linux and Mac OS X

Linux and Mac users can use the screen command to communicate with the
Arduino on a serial port. Check which serial port the Arduino is connected
to in the IDE’s Tools > Board menu. Then run a command like this (with an
older board the name of the serial port might be something like /dev/tty.usbserial-
A9007LUY, and on Linux systems it might be /dev/ttyUSB1 or something similar):

$ screen /dev/tty.usbmodem24321 9600

The screen command expects the name of the serial port and the baud rate to
be used. To quit the screen command, press Ctrl-a followed by k. (On some
systems it’s Ctrl-a followed by Ctrl-k.)

We can now communicate with the Arduino, and this has great implications:
whatever is controlled by the Arduino can also be controlled by your computer,
and vice versa. Switching LEDs on and off isn’t too spectacular, but try to
imagine what’s possible now. You could move robots, automate your home,
or create interactive games.

Here are some more important facts about serial communication:

• The Arduino Uno’s serial receive buffer can hold up to 64 bytes. When
sending large amounts of data at high speed, you have to synchronize
sender and receiver to prevent data loss. Usually, the receiver sends an
acknowledgment to the sender whenever it is ready to consume a new
chunk of data.

Chapter 2. Creating Bigger Projects with the Arduino • 34

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• You can control many devices using serial communication, but the regular
Arduino has only one serial port. If you need more, take a look at the
Arduino Due, which has four serial ports.2

• A Universal Asynchronous Receiver/Transmitter (UART)3 device supports
serial communication on the Arduino. This device handles serial commu-
nication while the CPU takes care of other tasks. This greatly improves
the system’s overall performance. The UART uses digital pins 0 (RX) and
1 (TX), which means you cannot use them for other purposes when com-
municating on the serial port. If you need them, you can disable serial
communication using Serial.end().

• With the SoftwareSerial4 library, you can use any digital pin for serial
communication. It has some limitations, but it is sufficient for most
applications.

In this chapter, you saw how to communicate with the Arduino using the
serial port, which opens the door to a whole new world of physical computing
projects. (See Learning More About Serial Communication, on page 253, for more
details about serial communication.) In the next chapters, you’ll learn how
to gather interesting facts about the real world using sensors, and you’ll learn
how to change the real world by moving objects. Serial communication is the
basis for letting you control all of these actions using the Arduino and your
PC.

What If It Doesn’t Work?
If anything goes wrong with the examples in this chapter, you should take a
look at What If It Doesn’t Work?, on page 21, first. If you still run into problems,
it may be because of some issues with serial communication. You might have
set the wrong baud rate; in the following figure, you can see what happens
in such a case.

2. http://arduino.cc/en/Main/arduinoBoardDue
3. http://en.wikipedia.org/wiki/UART
4. http://www.arduino.cc/en/Reference/SoftwareSerial

report erratum • discuss

What If It Doesn’t Work? • 35

http://arduino.cc/en/Main/arduinoBoardDue
http://en.wikipedia.org/wiki/UART
http://www.arduino.cc/en/Reference/SoftwareSerial
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Make sure that the baud rate you’ve set in your call to Serial.begin matches the
baud rate in the serial monitor.

Exercises
• Add new commands to the sample program. The command 3 could make

the LED blink for a while.

• Try to make the commands more readable; that is, instead of 1, use the
command “on”, and instead of 2, use “off”.

If you have problems solving these exercises, read Chapter 4, Building a Morse
Code Generator Library, on page 61.

Chapter 2. Creating Bigger Projects with the Arduino • 36

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Part II

Eleven Arduino Projects

CHAPTER 3

Building Binary Dice
Things will really start to get interesting now that you’ve learned the basics
of Arduino development. You now have the skills to create your first complex,
stand-alone projects. After you’ve worked through this chapter, you’ll know
how to work with LEDs, buttons, breadboards, and resistors. Combining
these parts with an Arduino gives you nearly endless opportunities for new
and cool projects.

Our first project will be creating an electronic die. While regular dice display
their results using one to six dots, ours will use LEDs instead. For our first
experiments, a single LED was sufficient, but for the dice we need more than
one. You need to connect several external LEDs to the Arduino. Because you
cannot attach them all directly to the Arduino, you’ll learn how to work with
breadboards. Also, you need a button that rolls the dice, so you’ll learn how
to work with pushbuttons, too. To connect pushbuttons and LEDs to the
Arduino, you need another important electronic part: the resistor. At the end
of the chapter, you’ll have many new tools in your toolbox.

What You Need
1. A half-size breadboard
2. Three LEDs (for the exercises you’ll need additional LEDs)
3. Two 10kΩ resistors (see Current, Voltage, and Resistance, on page 239, to

learn more about resistors)
4. Three 1kΩ resistors
5. Two pushbuttons
6. Some wires of different lengths
7. An Arduino board, such as the Uno, Duemilanove, or Diecimila
8. A USB cable to connect the Arduino to your computer

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Working with Breadboards

Figure 8— Breadboards come in various types
and sizes—the picture shows two.

Connecting parts directly to the
Arduino is an option only in the
simplest cases. Usually, you’ll
prototype your projects on a
breadboard that you connect to
the Arduino. A breadboard is like
a circuit board, but you don’t have
to solder parts to it; instead, you
simply plug them in.

All breadboards work the same
way. They have a lot of sockets
you can use for plugging in
through-hole parts or wires. That
alone wouldn’t be a big deal, but
the sockets are connected in a
special way. Figure 9, How sockets
on a breadboard are connected, on
page 41 shows how.

Chapter 3. Building Binary Dice • 40

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 9—How sockets on a breadboard are connected

As you can see, most sockets are connected in columns. If one socket of a
column is connected to a power supply, then automatically all the other
sockets in this column are powered, too. On the bigger board in the photo,
you can also see four rows of connected sockets. This is convenient for bigger
circuits. Usually, you connect one row to your power supply and one to the
ground. This way, you can distribute power and ground to any point on the
board. Note that on some breadboards there are gaps between the sockets
on a single row. On such breadboards you have to bridge the gaps using a
wire if needed.

Now let’s see how to put parts on a breadboard.

Using an LED on a Breadboard
Up to now, we used the status LED that is installed on the Arduino board.
This LED is nice for testing purposes, but it’s only sufficient for trivial elec-
tronics projects. Also, it’s very small and not very bright, so it’s a good idea
to get some additional LEDs and learn how to connect them to the Arduino.
It’s really easy.

report erratum • discuss

Using an LED on a Breadboard • 41

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We won’t use the same type of LEDs that are mounted on the Arduino board.
They are surface-mounted devices (SMD) that are difficult to handle. At the
beginning of your electronics career, you will rarely work with SMD parts,
because for most of them you need special equipment and a lot of experience.
They save costs as soon as you start mass production of an electronic device,
but pure hobbyists won’t need them often.

The LEDs we need are through-hole parts. They are named
through-hole parts because they are mounted to a circuit board
through holes. That’s why they usually have one or more long
wires. First you put the wires through holes in a printed circuit
board. Then you usually bend, solder, and cut them to attach the part to the
board. Where available, you can also plug them into sockets as you have them
on the Arduino or on breadboards.

In this section you’ll learn how to work with LEDs on a breadboard. Figure
10, Connecting an LED on a breadboard to the Arduino, on page 43 shows our
circuit. It consists of an Arduino, a breadboard, an LED, three wires, and a
1kΩ resistor. (More on that part in a few minutes.) Connect the Arduino to
the breadboard using two wires. Connect pin 12 with the ninth column of
the breadboard, and connect the ground pin with the tenth column. This
automatically connects all sockets in column 9 to pin 12 and all sockets in
column 10 to the ground. This choice of columns was arbitrary; you could’ve
used other columns instead.

Plug the LED’s negative connector (the shorter one) into column 10 and its
positive connector into column 9. When assembling an electronics project,
parts fall into two categories: those you can mount any way you like and
those that need a special direction. An LED has two connectors: an anode
(positive) and a cathode (negative). It’s easy to mix them up, and my science
teacher taught me the following mnemonic: the cathode is necative. It’s also
easy to remember what the negative connector of an LED is: it is shorter,
minus, less than. If you are a more positive person, then think of the anode
as being bigger, plus, more. You can alternatively identify an LED’s connectors
using its case. On the negative side the case is flat, while it’s round on the
positive side.

When you plug parts or wires into a breadboard, you have to press them
firmly until they slip in. You might need more than one try, especially on new
boards, and it’s often useful to shorten the connectors with a wire cutter
before plugging them into the breadboard. Make sure you can still identify
the negative and positive connectors after you’ve shortened them. Shorten

Chapter 3. Building Binary Dice • 42

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 10—Connecting an LED on a breadboard to the Arduino

the negative one a bit more. Also wear safety glasses to protect your eyes
when you’re cutting the connectors!

The things we’ve done up until now have been straightforward. That is, in
principle we have only extended the Arduino’s ground pin and its IO pin
number 12. Why do we have to add a resistor, and what is a resistor? A
resistor limits the amount of current that flows through an electric connection.
In our case, it protects the LED from consuming too much power, because
this would destroy the LED. You always have to use a resistor when powering
an LED! In Current, Voltage, and Resistance, on page 239, you can learn more
about resistors and their color bands. The following image shows a resistor
in various stages: unprocessed, bent, and cut. (See Learning How to Use a
Wire Cutter, on page 243, to learn how to use a wire cutter.)

report erratum • discuss

Using an LED on a Breadboard • 43

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We don’t want to fiddle around too much with the connectors, so we build
the circuit as shown in the following figure. That is, we use both sides of the
breadboard by connecting them with a short wire. Note that the resistor
bridges the sides, too.

To make the LED blink, we can use the same sketch we used in Meeting the
Arduino IDE, on page 14. We only have to set LED_PIN to 12 instead of 13:

Chapter 3. Building Binary Dice • 44

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

BinaryDice/Blink/Blink.ino
const unsigned int LED_PIN = 12;
const unsigned int PAUSE = 500;

void setup() {
pinMode(LED_PIN, OUTPUT);

}

void loop() {
digitalWrite(LED_PIN, HIGH);
delay(PAUSE);
digitalWrite(LED_PIN, LOW);
delay(PAUSE);

}

We’ve built a strong foundation for our project, and in the next section we’ll
build upon it.

First Version of a Binary Die
You’re certainly familiar with a regular die displaying results in a range from
one to six. To emulate such a die exactly with an electronic device, you’d need
seven LEDs and some fairly complicated business logic. We’ll take a shortcut
and display the result of a die roll in binary.

For a binary die, we need only three LEDs to represent the current result. We
turn the result into a binary number, and for every bit that is set, we light
up a corresponding LED. The following diagram shows how the die results
are mapped to LEDs. (A black triangle stands for a shining LED.)

We already know how to control a single LED on a breadboard. Controlling
three LEDs is similar and requires only more wires, LEDs, 1kΩ resistors, and
pins. Figure 11, A first working version of our binary die, on page 46 shows
the first working version of a binary die.

The most important difference is the common ground. When you need ground
for a single LED, you can connect it to the LED directly. But we need ground
for three LEDs now, so we’ll use the breadboard’s rows for the first time.
Connect the row marked with a hyphen (-) to the Arduino’s ground pin, and

report erratum • discuss

First Version of a Binary Die • 45

http://media.pragprog.com/titles/msard2/code/BinaryDice/Blink/Blink.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 11—A first working version of our binary die

all sockets in this row will work as ground pins, too. Then you can connect
this row’s sockets to the LEDs using short wires.

Everything else in this circuit should look familiar, because we only had to
clone the basic LED circuit from the previous section three times. Note that
we have connected the three LEDs to pins 10, 11, and 12. The only thing
missing is some software:

BinaryDice/BinaryDice/BinaryDice.ino
const unsigned int LED_BIT0 = 12;Line 1

const unsigned int LED_BIT1 = 11;-

const unsigned int LED_BIT2 = 10;-

-

void setup() {5

pinMode(LED_BIT0, OUTPUT);-

pinMode(LED_BIT1, OUTPUT);-

pinMode(LED_BIT2, OUTPUT);-

-

randomSeed(analogRead(A0));10

long result = random(1, 7);-

output_result(result);-

}-

Chapter 3. Building Binary Dice • 46

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BinaryDice/BinaryDice/BinaryDice.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

void loop() {15

}-

-

void output_result(const long result) {-

digitalWrite(LED_BIT0, result & B001);-

digitalWrite(LED_BIT1, result & B010);20

digitalWrite(LED_BIT2, result & B100);-

}-

This is all the code we need to implement the first version of a binary die. As
usual, we define some constants for the output pins the LEDs are connected
to. In the setup function, we set all the pins into OUTPUT mode. For the die, we
need random numbers in the range from one to six. The random function
returns random numbers in a specified range using a pseudorandom number
generator. In line 10, we initialize the generator with some noise we read from
analog input pin A0. (See Generating Random Numbers, on page 48, to learn
why we have to do that.) You might wonder where the constant A0 is from.
The Arduino IDE defines constants for all analog pins named A0, A1, and so
on. Then we actually generate a new random number between one and six
and output it using the output_result function. (The seven in the call to random
is correct, because it expects the upper limit plus one.)

The function output_result takes a number and outputs its lower three bits by
switching on or off our three LEDs accordingly. Here we use the & operator
and binary literals. The & operator takes two numbers and combines them
bitwise. When two corresponding bits are 1, the result of the & operator is 1,
too. Otherwise, it is 0. The B prefix allows you to put binary numbers directly
into your source code. For example, B11 is the same as 3.

You might have noticed that the loop function was left empty, and you might
wonder how such a die works. It’s pretty simple: whenever you restart the
Arduino, it outputs a new number, and to roll the die again, you have to press
the reset button.

Compile the code, upload it to the Arduino, and play with your binary die.
You have mastered your first advanced electronics project! Enjoy it for a
moment!

Whenever you want to see a new result, you have to reset the Arduino. That’s
probably the most pragmatic user interface you can build, and for a first
prototype, this is okay. But it’s more elegant to control the dice with your
own button. That’s what we’ll do in the next section.

report erratum • discuss

First Version of a Binary Die • 47

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Generating Random Numbers

Some computing problems are surprisingly difficult, and creating good random
numbers is one of them. After all, one of the most important properties of a computer
is deterministic behavior. Still, we often need—at least seemingly—random behavior
for a variety of purposes, ranging from games to cryptographic algorithms.

The most popular approach (used in Arduino’s random() function) is to create pseudo-
random numbers.a They seem to be random, but they actually are the result of a
formula. Different kinds of algorithms exist, but usually each new pseudorandom
number is calculated from its predecessors. This implies that you need an initialization
value to create the first random number of the sequence. This initialization value is
called a random seed, and to create different sequences of pseudorandom numbers,
you have to use different random seeds.

Creating pseudorandom numbers is cheap, but if you know the algorithm and the
random seed, you can easily predict them. So, you shouldn’t use them for crypto-
graphic purposes.

In the real world, you can find countless random processes, and with the Arduino,
it’s easy to measure them to create real random numbers. Often it’s sufficient to read
some random noise from analog pin 0 and pass it as the random seed to the random-
Seed() function. You can also use this noise to create real random numbers; there is
even a library for that purpose.b

If you need strong random numbers, the Arduino is a perfect device for creating them.
You can find many projects that observe natural processes solely to create random
numbers. One of them watches an hourglass using the Arduino.c

a. http://en.wikipedia.org/wiki/Pseudo-random_numbers
b. http://code.google.com/p/tinkerit/wiki/TrueRandom
c. http://www.circuitlake.com/usb-hourglass-sand-timer.html

Working with Buttons
In this section you’ll learn how pushbuttons work in principle and how you
can use them with an Arduino. We’ll start small and build a circuit that uses
a pushbutton to control a single LED.

What exactly is a pushbutton? The following figure shows three views of a
typical pushbutton. It has four connectors that fit perfectly on a breadboard
(at least after you have straightened them with a pair of pliers). Two opposite
pins connect when the button is pushed; otherwise, they are disconnected.

Chapter 3. Building Binary Dice • 48

report erratum • discuss

http://en.wikipedia.org/wiki/Pseudo-random_numbers
http://code.google.com/p/tinkerit/wiki/TrueRandom
http://www.circuitlake.com/usb-hourglass-sand-timer.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Connected

Connected

Top Front Side

The following picture shows a simple circuit using a pushbutton. Connect
pin 7 (chosen completely arbitrarily) to the pushbutton, and connect the
pushbutton via a 10kΩ resistor to ground. Then connect the 5-volt power
supply to the other pin of the button. Make sure the pushbutton’s orientation
is right. Its connected pins have to bridge the gap of the breadboard.

All in all, this approach seems straightforward, but why do we need a resistor
again? The problem is that we expect the pushbutton to return a default
value (LOW) in case it isn’t pressed. But when the button isn’t pressed, it would
be directly connected to ground and would flicker because of static and
interference. Only a little bit of current flows through the resistor, and this
helps prevent random fluctuations in the voltage at the input pin.

When the button is pressed, there will still be 5 volts at the Arduino’s digital
pin, but when the button isn’t pressed, it will cleanly read the connection to
ground. We call this a pull-down resistor; a pull-up resistor works exactly the
other way around. That is, you have to connect the Arduino’s signal pin to
power through the pushbutton and connect the other pin of the pushbutton
to ground using a resistor.

Now that we’ve eliminated all this ugly unstable real-world behavior, we can
return to the stable and comforting world of software development. The follow-
ing program checks whether a pushbutton is pressed and lights an LED
accordingly:

report erratum • discuss

Working with Buttons • 49

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

BinaryDice/SimpleButton/SimpleButton.ino
const unsigned int BUTTON_PIN = 7;
const unsigned int LED_PIN = 13;

void setup() {
pinMode(LED_PIN, OUTPUT);
pinMode(BUTTON_PIN, INPUT);

}
void loop() {

const int BUTTON_STATE = digitalRead(BUTTON_PIN);

if (BUTTON_STATE == HIGH)
digitalWrite(LED_PIN, HIGH);

else
digitalWrite(LED_PIN, LOW);

}

We connect the button to pin 7 and the LED to pin 13 and initialize those
pins in the setup function. In loop, we read the current state of the pin connected
to the button. If it is HIGH, we turn the LED on. Otherwise, we turn it off.

Upload the program to the Arduino, and you’ll see that the LED is on as long
as you press the button. As soon as you release the button, the LED turns
off. This is pretty cool, because now we nearly have everything we need to
control our die using our own button. But before we proceed, we’ll slightly
enhance our example and turn the button into a real light switch.

To build a light switch, we start with the simplest possible solution. Do not
change the current circuit, and upload the following program to your Arduino:

BinaryDice/UnreliableSwitch/UnreliableSwitch.ino
const unsigned int BUTTON_PIN = 7;Line 1

const unsigned int LED_PIN = 13;-

-

void setup() {-

pinMode(LED_PIN, OUTPUT);5

pinMode(BUTTON_PIN, INPUT);-

}-

int led_state = LOW;-

void loop() {-

const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);10

if (CURRENT_BUTTON_STATE == HIGH) {-

if (led_state == LOW)-

led_state = HIGH;-

else-

led_state = LOW;15

digitalWrite(LED_PIN, led_state);-

}-

}-

Chapter 3. Building Binary Dice • 50

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BinaryDice/SimpleButton/SimpleButton.ino
http://media.pragprog.com/titles/msard2/code/BinaryDice/UnreliableSwitch/UnreliableSwitch.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We begin with the usual pin constants, and in setup we set the modes of the
pins we use. In line 8, we define a global variable named led_state to store the
current state of our LED. It will be LOW when the LED is off and HIGH otherwise.
In loop, we check the button’s current state. When we press the button, its
state switches to HIGH, and we toggle the content of led_state. That is, if led_state
was HIGH, we set it to LOW, and vice versa. At the end, we set the physical LED’s
state to our current software state accordingly.

Our solution is really simple, but unfortunately, it doesn’t work. Play around
with it, and you’ll quickly notice some annoying behavior. If you press the
button, the LED sometimes will turn on and then off immediately. Also, if
you release it, the LED will often remain in a more or less arbitrary state; that
is, sometimes it will be on and sometimes off.

The problem is that the Arduino executes the loop method over and over again.
Although the Arduino’s CPU is comparatively slow, this would happen quite
often—regardless of whether we are currently pressing the button. But if you
press it and keep it pressed, its state will constantly be HIGH, and you’d con-
stantly toggle the LED’s state (because this happens so fast, it seems like the
LED is constantly on). When you release the button, the LED is in a more or
less arbitrary state.

To improve the situation, we have to store not only the LED’s current state,
but also the pushbutton’s previous state:

BinaryDice/MoreReliableSwitch/MoreReliableSwitch.ino
const unsigned int BUTTON_PIN = 7;
const unsigned int LED_PIN = 13;

void setup() {
pinMode(LED_PIN, OUTPUT);
pinMode(BUTTON_PIN, INPUT);

}
int old_button_state = LOW;
int led_state = LOW;

void loop() {
const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);
if (CURRENT_BUTTON_STATE != old_button_state && CURRENT_BUTTON_STATE == HIGH) {

if (led_state == LOW)
led_state = HIGH;

else
led_state = LOW;

digitalWrite(LED_PIN, led_state);
}
old_button_state = CURRENT_BUTTON_STATE;

}

report erratum • discuss

Working with Buttons • 51

http://media.pragprog.com/titles/msard2/code/BinaryDice/MoreReliableSwitch/MoreReliableSwitch.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

After initializing the button and LED pins, we declare two variables: old_but-
ton_state stores the previous state of our pushbutton, and led_state stores the
LED’s current state. Both can be either HIGH or LOW.

In the loop function, we still have to read the current button state, but now
we not only check whether it is HIGH, but we also check whether it has changed
since the last time we read it. Only when both conditions are met do we toggle
the LED’s state. So, we no longer turn the LED on and off over and over again
as long as the button is pressed. At the end of our program, we have to store
the button’s current state in old_button_state.

Upload the new version, and you’ll see that this solution works much better
than our old one. But you will still find some cases when the button doesn’t
behave fully as expected. Problems mainly occur in the moment you release
the button.

These problems occur because the mechanical buttons bounce for a few
milliseconds when you press them. In the following figure, you can see a
typical signal produced by a mechanical button. Right after you have pressed
the button, it doesn’t emit a clear signal. To overcome this effect, you have
to debounce the button. It’s usually sufficient to wait a short period of time
until the button’s signal stabilizes. Debouncing ensures that the input pin
reacts only once to a push of the button:

Button pressed Button released

5 V

0 V

In addition to debouncing, we still have to store the current state of the LED
in a variable. Here’s how to do that:

BinaryDice/DebounceButton/DebounceButton.ino
const unsigned int BUTTON_PIN = 7;Line 1

const unsigned int LED_PIN = 13;-

void setup() {-

pinMode(LED_PIN, OUTPUT);-

pinMode(BUTTON_PIN, INPUT);5

}-

-

int old_button_state = LOW;-

int led_state = LOW;-

10

void loop() {-

Chapter 3. Building Binary Dice • 52

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BinaryDice/DebounceButton/DebounceButton.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

const int CURRENT_BUTTON_STATE = digitalRead(BUTTON_PIN);-

if (CURRENT_BUTTON_STATE != old_button_state &&-

CURRENT_BUTTON_STATE == HIGH)-

{15

if (led_state == LOW)-

led_state = HIGH;-

else-

led_state = LOW;-

digitalWrite(LED_PIN, led_state);20

delay(50);-

}-

old_button_state = CURRENT_BUTTON_STATE;-

}-

This final version of our LED switch differs from the previous one in only a
single line: to debounce the button, we wait for 50 milliseconds in line 21
before we enter the main loop again. For the moment this solution is sufficient,
but you’ll learn about an even better one in a few minutes.

That’s everything you need to know about pushbuttons for now. In the next
section, we’ll use two buttons to turn our binary die into a real game.

Adding Your Own Button
Now that you know how to work with pushbuttons, you no longer have to
abuse the Arduino’s reset button to control the die. You can add your own
pushbutton instead. As Figure 12, Our binary die with its own start button,
on page 54, we need to change our current circuit only slightly. Actually, we
don’t have to change the existing parts at all; we only need to add some things.
First, we plug a button into the breadboard and connect it to pin 7. Then we
connect the button to the ground via a 10kΩ resistor and use a small piece
of wire to connect it to the 5-volt pin.

That’s all the hardware we need. Here’s the corresponding software:

BinaryDice/DiceWithButton/DiceWithButton.ino
const unsigned int LED_BIT0 = 12;
const unsigned int LED_BIT1 = 11;
const unsigned int LED_BIT2 = 10;
const unsigned int BUTTON_PIN = 7;

void setup() {
pinMode(LED_BIT0, OUTPUT);
pinMode(LED_BIT1, OUTPUT);
pinMode(LED_BIT2, OUTPUT);
pinMode(BUTTON_PIN, INPUT);
randomSeed(analogRead(A0));

}

report erratum • discuss

Adding Your Own Button • 53

http://media.pragprog.com/titles/msard2/code/BinaryDice/DiceWithButton/DiceWithButton.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 12—Our binary die with its own start button

int current_value = 0;
int old_value = 0;
void loop() {

current_value = digitalRead(BUTTON_PIN);
if (current_value != old_value && current_value == HIGH) {

output_result(random(1, 7));
delay(50);

}
old_value = current_value;

}
void output_result(const long result) {

digitalWrite(LED_BIT0, result & B001);
digitalWrite(LED_BIT1, result & B010);
digitalWrite(LED_BIT2, result & B100);

}

That’s a perfect merge of the original code and the code needed to control a
debounced button. As usual, we initialize all pins we use: three output pins
for the LEDs and one input pin for the button. We also initialize the random
seed, and in the loop function we wait for new button presses. Whenever the
button gets pressed, we roll the die and output the result using the LEDs.
We’ve replaced the reset button with our own!

Now that you know how easy it is to add a pushbutton, we’ll add another one
in the next section to turn our simple die into a game.

Chapter 3. Building Binary Dice • 54

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Building a Dice Game
Turning our rudimentary die into a full-blown game requires adding another
pushbutton. With the first one we can still roll the die, and with the second
one we can program a guess. When we roll the die again and the current
result equals our guess, the three LEDs on the die will blink. Otherwise, they
will remain dark.

To enter a guess, press the guess button the correct number of times. If you
think the next result will be a 3, press the guess button three times and then
press the start button.

To add another button to the circuit, do exactly the same thing as you did
for the first one. Figure 13, Our binary die now has a guess button, on page
56 shows that we have added yet another button circuit to the breadboard.
This time we’ve connected it to pin 5.

Now we need some code to control the new button. You might be tempted to
copy it from the previous program—after all, we copied the hardware design,
right? In the real world, some redundancy is totally acceptable, because you
actually need two physical buttons, even if they are the same in principle. In
the world of software, redundancy is a no-go, though, because it quickly leads
to maintenance hell. You should always make sure that every important piece
of information is represented only once in your program. Instead of copying
numbers, you should use constants. Instead of copying code, you should use
functions or classes. This way your code will become more compact and more
readable. As a bonus, it will be much easier to change your code, because
when you copy code you have to remember all the places you’ve copied it to
when you have to make a change. If you’ve isolated the code in a single place,
you have to change it only once.

So, we won’t copy our debounce logic, but we’ll use the Bounce2 library1 that
was written for this purpose. Download the library2 and unpack its contents
into ~/Documents/Arduino/libraries (on a Mac) or My Documents\Arduino\libraries (on a
Windows machine). Usually that’s all you have to do, but it never hurts to
read the installation instructions and documentation on the web page.

Now that’s all done, our dice game is complete. Here’s the code of the final
version:

1. https://github.com/thomasfredericks/Bounce-Arduino-Wiring
2. https://github.com/thomasfredericks/Bounce-Arduino-Wiring/archive/master.zip

report erratum • discuss

Building a Dice Game • 55

https://github.com/thomasfredericks/Bounce-Arduino-Wiring
https://github.com/thomasfredericks/Bounce-Arduino-Wiring/archive/master.zip
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 13—Our binary die now has a guess button.

BinaryDice/DiceGame/DiceGame.ino
#include <Bounce2.h>Line 1

const unsigned int LED_BIT0 = 12;-

const unsigned int LED_BIT1 = 11;-

const unsigned int LED_BIT2 = 10;-

const unsigned int GUESS_BUTTON_PIN = 5;5

const unsigned int START_BUTTON_PIN = 7;-

const unsigned int BAUD_RATE = 9600;-

const unsigned int DEBOUNCE_DELAY = 20;-

-

int guess = 0;10

Bounce start_button;-

Bounce guess_button;-

-

void setup() {-

pinMode(LED_BIT0, OUTPUT);15

pinMode(LED_BIT1, OUTPUT);-

pinMode(LED_BIT2, OUTPUT);-

pinMode(START_BUTTON_PIN, INPUT);-

pinMode(GUESS_BUTTON_PIN, INPUT);-

start_button.attach(START_BUTTON_PIN);20

start_button.interval(DEBOUNCE_DELAY);-

guess_button.attach(GUESS_BUTTON_PIN);-

guess_button.interval(DEBOUNCE_DELAY);-

randomSeed(analogRead(A0));-

Serial.begin(BAUD_RATE);25

}-

-

Chapter 3. Building Binary Dice • 56

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BinaryDice/DiceGame/DiceGame.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void loop() {-

handle_guess_button();-

handle_start_button();30

}-

-

void handle_guess_button() {-

if (guess_button.update()) {-

if (guess_button.read() == HIGH) {35

guess = (guess % 6) + 1;-

output_result(guess);-

Serial.print("Guess: ");-

Serial.println(guess);-

}40

}-

}-

-

void handle_start_button() {-

if (start_button.update()) {45

if (start_button.read() == HIGH) {-

const int result = random(1, 7);-

output_result(result);-

Serial.print("Result: ");-

Serial.println(result);50

if (guess > 0) {-

if (result == guess) {-

Serial.println("You win!");-

hooray();-

} else {55

Serial.println("You lose!");-

}-

}-

delay(2000);-

guess = 0;60

}-

}-

}-

void output_result(const long result) {-

digitalWrite(LED_BIT0, result & B001);65

digitalWrite(LED_BIT1, result & B010);-

digitalWrite(LED_BIT2, result & B100);-

}-

-

void hooray() {70

for (unsigned int i = 0; i < 3; i++) {-

output_result(7);-

delay(500);-

output_result(0);-

delay(500);75

}-

}-

report erratum • discuss

Building a Dice Game • 57

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Admittedly that’s a lot of code, but you know most of it already, and the new
parts are fairly easy. In the first line, we include the Bounce2 library we’ll use
later to debounce our two buttons. Then we define constants for the pins we
use, and we define the variable guess that will hold the player’s current guess.

The Bounce2 library declares a class named Bounce, and you have to create a
Bounce object for every button you want to debounce. That’s what happens in
lines 11 and 12.

In the setup method, we initialize all our pins and set the random seed. We
also initialize the serial port, because we’ll output some debug messages. In
lines 20 to 23, we initialize the two Bounce objects. The attach method connects
a Bounce object to a certain pin. With the interval method you can set a button’s
debounce delay in milliseconds.

Our loop function has been reduced to two function calls. One is responsible
for dealing with guess button pushes, and the other one handles pushes of
the start button. In handle_guess_button, we use the Bounce class for the first time.
To determine the current state of our guess_button object, we have to call its
update method. Afterward, we read its current status using the read method.

If the button was pressed, its state is set to HIGH, and we increment the guess
variable. To make sure that the guess is always in the range between 1 and
6, we use the modulus operator (%) in line 36. This operator divides two values
and returns the remainder. For 6, it returns values between 0 and 5, because
when you divide a number by 6, the remainder is always between 0 and 5.
Add 1 to the result, and you get values between 1 and 6. Finally, we output
the current guess using the three LEDs, and we also print it to the serial port.

The handling of the start button in handle_start_button works exactly the same
as the handling of the guess button. When the start button is pressed, we
calculate a new result and output it on the serial port. Then we check whether
the user has entered a guess (guess is greater than zero in this case) and
whether the user has guessed the correct result. In either case, we print a
message to the serial port, and if the user guessed right, we also call the hooray
method. hooray lets all three LEDs blink several times.

At the end of the method, we wait for two seconds until the game starts again,
and we reset the current guess to zero.

After you’ve uploaded the software to the Arduino, start the IDE’s serial
monitor. It will print the current value of the guess variable whenever you
press the guess button. Press the start button, and the new result appears.
In the following figure, you can see a typical output of our binary die.

Chapter 3. Building Binary Dice • 58

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In this chapter, you completed your first really complex Arduino project. You
needed a breadboard, LEDs, buttons, resistors, and wires, and you wrote a
nontrivial piece of software to make all the hardware come to life.

More LEDs, Dice, and Cubes

Building binary dice is fun, and it’s an easy project even for beginners. But what
about the opposite—reading real dice? Steve Hoefera has built a dice reader using an
Arduino, and it’s impressive. He uses five pairs of infrared emitters and receivers to
“scan” a die’s surface. It’s a fairly advanced project, and you can learn a lot from it.

Another interesting project is an LED cube: building a cube consisting of LEDs.b It’s
surprisingly difficult to control more than a few LEDs, but you can produce astonishing
results.

a. http://grathio.com/2009/08/dice-reader-version-2.html
b. http://www.instructables.com/id/The-4x4x4-LED-cube-Arduino/

In the next chapter, we’ll write an even more sophisticated program for gen-
erating Morse code. You’ll also learn how to create your own Arduino libraries
that you can easily share with the rest of the world.

What If It Doesn’t Work?
Don’t panic! A lot of things will probably go wrong when you work with
breadboards for the first time. The biggest problem usually is that you didn’t
connect parts correctly. It takes some time to find the right technique for
plugging LEDs, wires, resistors, and buttons into the breadboard. You have

report erratum • discuss

What If It Doesn’t Work? • 59

http://grathio.com/2009/08/dice-reader-version-2.html
http://www.instructables.com/id/The-4x4x4-LED-cube-Arduino/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

to press firmly but not too hard—otherwise, you’ll bend the connectors, and
they won’t fit. It’s usually easier to plug in parts after you’ve shortened the
connectors. When cutting the connectors, wear safety glasses to protect your
eyes!

While fiddling around with the parts, don’t forget that some of them—LEDs,
for example—need a certain direction. Pushbuttons are candidates for
potential problems, too. Take a close look at the pushbuttons on page 48 and
make sure that you’ve mounted them in the right direction.

Even simple things, such as ordinary wires, can lead to problems, especially
if they aren’t the right length. If a wire is too short and might potentially slip
out of its socket, replace it immediately. Wires are too cheap to waste your
valuable time with unnecessary and annoying debugging sessions.

It might be—although it’s rare—that you actually have a damaged LED. If
none of the tricks mentioned helps, try another LED.

Exercises
• Binary dice are all very well when you’re playing Monopoly with your geeky

friends, but most people prefer more familiar dice. Try turning binary dice
into decimal dice with seven LEDs. Arrange the LEDs like the eyes on
regular dice.

• The 1kΩ resistors we used to protect our LEDs in this chapter are rather
big. Read Resistors, on page 241, and replace them with smaller ones, for
example 470Ω. Can you see the difference in brightness?

• LEDs can be used for more than displaying binary dice results. Provided
you have enough LEDs, you can easily build other things, such as a
binary clock.3 You already know enough about electronics and Arduino
programming to build your own binary clock. Try it or think about other
things you could display using a few LEDs.

3. http://www.instructables.com/id/My-Arduino-Binary-Clock/

Chapter 3. Building Binary Dice • 60

report erratum • discuss

http://www.instructables.com/id/My-Arduino-Binary-Clock/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 4

Building a Morse Code Generator Library
You now know enough about the Arduino development environment and
about blinking LEDs to start a bigger project. In this chapter, we’ll develop a
Morse code generator that reads text from the serial port and outputs it as
light signals using an LED.

By building this project, you’ll deepen your understanding of serial commu-
nication between the Arduino and your computer. You’ll also learn a lot about
the typical Arduino development process: how to use existing libraries and
how to structure bigger projects into your own libraries. At the end, you’ll be
able to create a library that is ready for publishing on the Internet.

What You Need
1. An Arduino board

such as the Uno,
Duemilanove,
or Diecimila

2. A USB cable to
connect the
Arduino to your
computer

3. A speaker or a
buzzer (optional)

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Learning the Basics of Morse Code
Morse code was invented to turn text into sounds.1 In principle, it works like
a character set encoding, such as ASCII. But while ASCII encodes characters
as numbers, in Morse code they’re sequences of dots and dashes (also called
dits and dahs). Dits are shorter in length than dahs. An A is encoded as · –
and – – · · is Z.

Morse code also specifies a timing scheme that defines the length of the dits
and dahs. It specifies how long the pauses between symbols and words have
to be. The base unit of Morse code is the length of a dit, and a dah is as long
as three dits. You insert a pause of one dit between two symbols, and you
separate two letters by three dits. You insert a pause of seven dits between
two words.

To transmit a message encoded in Morse code, you need a way to emit signals
of different lengths. The classic approach is to use sounds, but we will use
an LED that is turned on and off for varying periods of time. Sailors still
transmit Morse code using blinking lights.

Let’s implement a Morse code generator!

Building a Morse Code Generator
The main part of our library will be a C++ class named Telegraph. In this section,
we’ll define its interface, but we will start with a new sketch that looks as
follows:

TelegraphLibrary/TelegraphLibrary.ino
void setup() {
}

void loop() {
}

This is the most minimalistic Arduino program possible. It doesn’t do anything
except define all mandatory functions, even if they are empty. We do this so
we can compile our work in progress from time to time and check whether
there are any syntactical errors. Save the sketch as TelegraphLibrary, and the
IDE will create a folder named TelegraphLibrary and a file named TelegraphLibrary.ino
in it. All the files and directories we need for our library will be stored in the
TelegraphLibrary folder.

1. http://en.wikipedia.org/wiki/Morse_Code

Chapter 4. Building a Morse Code Generator Library • 62

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/TelegraphLibrary.ino
http://en.wikipedia.org/wiki/Morse_Code
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Now open a new tab, and when asked for a filename, enter telegraph.h. Yes, we
will create a good old C header file. (To be precise, it will even be a C++
header file.)

TelegraphLibrary/telegraph.h
#ifndef __TELEGRAPH_H__
#define __TELEGRAPH_H__

class Telegraph {
public:

Telegraph(const int output_pin, const int dit_length);
void send_message(const char* message);

private:
void dit();
void dah();
void output_code(const char* code);
void output_symbol(const int length);

int _output_pin;
int _dit_length;
int _dah_length;

};

#endif

Ah, obviously object-oriented programming is not only for the big CPUs any-
more! This is an interface description of a Telegraph class that you could use
in your next enterprise project (provided that you need to transmit some
information as Morse code, that is).

We start with the classic double-include prevention mechanism; that is, the
body of the header file defines a preprocessor macro named __TELEGRAPH_H__.
We wrap the body (that contains this definition) in an #ifndef so that the body
is only compiled if the macro has not been defined. That way, you can include
the header as many times as you want, and the body will be compiled only
once.

The interface of the Telegraph class consists of a public part that users of the
class have access to and a private part that only members of the class can
use. In the public part, you find two things: a constructor that creates new
Telegraph objects and a method named send_message that sends a message by
emitting it as Morse code. In your applications, you can use the class as fol-
lows:

Telegraph telegraph(13, 200);
telegraph.send_message("Hello, world!");

report erratum • discuss

Building a Morse Code Generator • 63

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/telegraph.h
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In the first line, we create a new Telegraph object that communicates on pin
13 and emits dits that are 200 milliseconds long. Then we emit the message
“Hello, world!” as Morse code. This way, we are able to send whatever message
we want, and we can change easily the pin and the length of a dit.

Now that we have defined the interface, we will implement it.

Fleshing Out the Morse Code Generator’s Interface
Declaring interfaces is important, but it’s as important to implement them.
Create a new tab and enter the filename telegraph.cpp.

This is the right place to explain why we’ve used TelegraphLibrary and not Telegraph
as the sketch’ name, even though it’d be a more natural choice. The reason
is that the Arduino IDE turns every sketch (ending with .ino) into a C++ file
(ending with .cpp). For a sketch named Telegraph.ino it generates a C++ file named
Telegraph.cpp. In a case-insensitive file system, this conflicts with a file named
telegraph.cpp, and it leads to some strange error messages.

Enter the following code now in the newly created tab:

TelegraphLibrary/telegraph.cpp
#include <ctype.h>
#include <Arduino.h>
#include "telegraph.h"

const char* LETTERS[] = {
".-", "-...", "-.-.", "-..", ".", // A-E
"..-.", "--.", "....", "..", ".---", // F-J
"-.-", ".-..", "--", "-.", "---", // K-O
".--.", "--.-", ".-.", "...", "-", // P-T
"..-", "...-", ".--", "-..-", "-.--", // U-Y
"--.." // Z

};

const char* DIGITS[] = {
"-----", ".----", "..---", "...--", // 0-3
"....-", ".....", "-....", "--...", // 4-7
"---..", "----." // 8-9

};

Like most C++ programs, ours imports some libraries first. Because we need
functions such as toupper later, we include ctype.h, and we have to include
telegraph.h to make our class declaration and its corresponding function decla-
rations available. But what is Arduino.h good for?

Until now we haven’t thought about where constants such as HIGH, LOW, or
OUTPUT came from. They are defined in several header files that come with the

Chapter 4. Building a Morse Code Generator Library • 64

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/telegraph.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Arduino IDE, and you can find them in the hardware/arduino/cores/arduino directory
of the IDE. Have a look at Arduino.h (in older Arduino versions this file was
named WProgram.h). It contains all the constants we have used so far and many
more. It also declares many useful macros and the Arduino’s most basic
functions.

When you edit regular sketches, you don’t have to worry about including any
standard header files, because the IDE does it automatically behind the
scenes. As soon as you create more complex projects that contain “real” C++
code, you have to manage everything yourself. You have to explicitly import
all the libraries you need, even for basic stuff such as the Arduino constants.

After importing all necessary header files, we define two string arrays named
LETTERS and DIGITS. They contain the Morse code for all letters and digits, and
we’ll use them later to translate regular text into Morse code. Before we do
that, we define the constructor that is responsible for creating and initializing
new Telegraph objects:

TelegraphLibrary/telegraph.cpp
Telegraph::Telegraph(const int output_pin, const int dit_length) {

_output_pin = output_pin;
_dit_length = dit_length;
_dah_length = dit_length * 3;
pinMode(_output_pin, OUTPUT);

}

The constructor expects two arguments: the number of the pin the Morse
code should be sent to and the length of a dit measured in milliseconds. Then
it stores these values in corresponding instance variables, calculates the
correct length of a dah, and turns the communication pin into an output pin.

You’ve probably noticed that all private instance variables start with an
underscore. I like that convention personally, but it isn’t enforced by C++ or
the Arduino IDE.

Outputting Morse Code Symbols
After everything has been initialized, we can start to output Morse code
symbols. We use several small helper methods to make our code as readable
as possible:

TelegraphLibrary/telegraph.cpp
void Telegraph::output_code(const char* code) {

const unsigned int code_length = strlen(code);

for (unsigned int i = 0; i < code_length; i++) {
if (code[i] == '.')

report erratum • discuss

Outputting Morse Code Symbols • 65

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/telegraph.cpp
http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/telegraph.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

dit();
else
dah();

if (i != code_length - 1)
delay(_dit_length);

}
}

void Telegraph::dit() {
Serial.print(".");
output_symbol(_dit_length);

}

void Telegraph::dah() {
Serial.print("-");
output_symbol(_dah_length);

}
void Telegraph::output_symbol(const int length) {

digitalWrite(_output_pin, HIGH);
delay(length);
digitalWrite(_output_pin, LOW);

}

The function output_code takes a Morse code sequence consisting of dots and
dashes and turns it into calls to dit and dah. The dit and dah methods then print
a dot or a dash to the serial port and delegate the rest of the work to output_sym-
bol, passing it the length of the Morse code symbol to be emitted. output_symbol
sets the output pin to HIGH for the length of the symbol, and then it sets it
back to LOW. Everything works exactly as described in the Morse code timing
scheme, and only the implementation of send_message is missing:

TelegraphLibrary/telegraph.cpp
void Telegraph::send_message(const char* message) {Line 1

for (unsigned int i = 0; i < strlen(message); i++) {-

const char current_char = toupper(message[i]);-

if (isalpha(current_char)) {-

output_code(LETTERS[current_char - 'A']);5

delay(_dah_length);-

} else if (isdigit(current_char)) {-

output_code(DIGITS[current_char - '0']);-

delay(_dah_length);-

} else if (current_char == ' ') {10

Serial.print(" ");-

delay(_dit_length * 7);-

}-

}-

Serial.println();15

}-

Chapter 4. Building a Morse Code Generator Library • 66

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/telegraph.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

send_message outputs a message character by character in a loop. In line 3, we
turn the current character into uppercase, because lowercase characters are
not defined in Morse code (that’s why you can’t implement a chat client using
Morse code). Then we check whether the current character is a letter using
C’s isalpha function. If it is, we use the character to determine its Morse code
representation that is stored in the LETTERS array. To do that, we use an old
trick: in the ASCII table, all letters (and digits) appear in the correct order—that
is, A=65, B=66, and so on. To transform the current character into an index
for the LETTERS array, we have to subtract 65 (or 'A') from its ASCII code. When
we have determined the correct Morse code, we pass it to output_symbol and
delay the program for the length of a dah afterward.

The algorithm works exactly the same for outputting digits; we only have to
index the DIGITS array instead of the LETTERS array, and we have to subtract
the ASCII value of the character '0'.

In line 10, we check whether we received a blank character. If yes, we print
a blank character to the serial port and wait for seven dits. All other characters
are ignored: we only process letters, digits, and blanks. At the end of the
method, we send a newline character to the serial port to mark the end of the
message.

Installing and Using the Telegraph Class
Our Telegraph class is complete, and we should now create some example
sketches that actually use it. This is important for two reasons: we can test
our library code, and for users of our class it’s good documentation for how
to use it.

The Arduino IDE looks for libraries in two places: in its global libraries folder
relative to its installation directory and in the user’s local sketchbook directory.
During development, it’s best to use the local sketchbook directory. You can
find its location in the IDE’s Preferences (see Figure 14, Find the sketchbook
location in the Preferences, on page 68). Create a new directory named libraries
in the sketchbook directory.

To make the Telegraph class available, create a Telegraph subfolder in the libraries
folder. Then copy telegraph.h and telegraph.cpp to the new libraries/Telegraph folder.
(Do not copy TelegraphLibrary.ino.) Restart the IDE.

Let’s start with the mother of all programs: “Hello, world!” Create a new sketch
named HelloWorld and enter the following code:

report erratum • discuss

Installing and Using the Telegraph Class • 67

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 14—Find the sketchbook location in the Preferences.

TelegraphLibrary/examples/HelloWorld/HelloWorld.ino
#include "telegraph.h"
const unsigned int BAUD_RATE = 9600;
const unsigned int OUTPUT_PIN = 13;
const unsigned int DIT_LENGTH = 200;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);

void setup() {
Serial.begin(BAUD_RATE);

}
void loop() {

telegraph.send_message("Hello, world!");
delay(5000);

}

This sketch emits the string “Hello, world!” as Morse code every five seconds.
To achieve this, we include the definition of our Telegraph class, and we define
constants for the pin our LED is connected to and for the length of our dits.
Then we create a global Telegraph object and an empty setup function. In loop,
we then invoke send_message on our Telegraph instance every five seconds.

When you compile this sketch, the Arduino IDE automatically compiles the
telegraph library, too. If you forgot to copy the library files to the libraries/Telegraph
folder, you’ll get an error message such as “Telegraph does not name a type.”

Chapter 4. Building a Morse Code Generator Library • 68

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/examples/HelloWorld/HelloWorld.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

If you’ve copied the files but made any syntactical errors, you’ll also be notified
now. If you have to correct some errors, make sure you change your original
source code files. After you’ve fixed the errors, copy the files to the libraries
folder again, and don’t forget to restart the IDE.

Turning a static string into Morse code is nice, but wouldn’t it be great if our
program could work for arbitrary strings? So, let’s add a more sophisticated
example. This time, we’ll write code that reads messages from the serial port
and feeds them into a Telegraph instance.

Create a new sketch named MorseCodeGenerator and enter the following code:

TelegraphLibrary/examples/MorseCodeGenerator/MorseCodeGenerator.ino
#include "telegraph.h"

const unsigned int OUTPUT_PIN = 13;
const unsigned int DIT_LENGTH = 200;
const unsigned int MAX_MESSAGE_LEN = 128;
const unsigned int BAUD_RATE = 9600;
const char NEWLINE = '\n';

char message_text[MAX_MESSAGE_LEN];
int index = 0;

Telegraph telegraph(OUTPUT_PIN, DIT_LENGTH);

void setup() {
Serial.begin(BAUD_RATE);

}

void loop() {
if (Serial.available() > 0) {

int current_char = Serial.read();
if (current_char == NEWLINE || index == MAX_MESSAGE_LEN - 1) {
message_text[index] = 0;
index = 0;
telegraph.send_message(message_text);

} else {
message_text[index++] = current_char;

}
}

}

Again, we include the header file of the Telegraph class, and as usual we define
some constants: OUTPUT_PIN defines the pin our LED is connected to, and
DIT_LENGTH contains the length of a dit measured in milliseconds. NEWLINE is
set to the ASCII code of the newline character. We need it to determine the

report erratum • discuss

Installing and Using the Telegraph Class • 69

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/examples/MorseCodeGenerator/MorseCodeGenerator.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

end of the message to be emitted as Morse code. Finally, we set MAX_MESSAGE_LEN
to the maximum length of the messages we are able to send.

Next we define three global variables: message_text is a character buffer that
gets filled with the data we receive on the serial port. index keeps track of our
current position in the buffer, and telegraph is the Telegraph object we’ll use to
convert a message into “blinkenlights.”2

setup initializes the serial port, and in loop we check whether new data has
arrived, calling Serial.available. We read the next byte if new data is available,
and we check whether it is a newline character or whether it is the last byte
that fits into our character buffer. In both cases, we set the last byte of mes-
sage_text to 0, because strings in C/C++ are null-terminated. We also reset
index so we can read the next message, and finally we send the message using
our telegraph. In all other cases, we add the latest byte to the current message
text and move on.

You should compile and upload the program now. Open the serial monitor
and choose “Newline” from the line endings drop-down menu at the bottom
of the window. With this option set, the serial monitor will automatically
append a newline character to every line it sends to the Arduino. Enter a
message such as your name, click the Send button, and see how the Arduino
turns it into light. In the following figure, you can see what happens when
you enter my name.

2. http://en.wikipedia.org/wiki/Blinkenlights

Chapter 4. Building a Morse Code Generator Library • 70

report erratum • discuss

http://en.wikipedia.org/wiki/Blinkenlights
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Because we’ve encapsulated the whole Morse code logic in the Telegraph class,
our main program is short and concise. Creating software for embedded
devices doesn’t mean we can’t benefit from the advantages of object-oriented
programming.

Still, we have some minor things to do to turn our project into a first-class
library. Read more about it in the next section.

Publishing Your Own Library
One of the nice features of the Arduino IDE is its syntax coloring. Class names,
function names, variables, and so on all have different colors in the editor.
This makes it much easier to read source code, and it’s possible to add syntax
coloring for libraries. You only have to add a file named keywords.txt to your
project:

TelegraphLibrary/keywords.txt
Syntax-coloring for the telegraph library

Telegraph KEYWORD1
send_message KEYWORD2

Blank lines and lines starting with a # character will be ignored. The
remaining lines contain the name of one of the library’s members and the
member’s type. Separate them with a tab character. Classes have the type
KEYWORD1, while functions have the type KEYWORD2. For constants, use LITERAL1.

To enable syntax coloring for the telegraph library, copy keywords.txt to the
libraries/Telegraph folder and restart the IDE. Now the name of the Telegraph class
will be orange, and send_message will be brown.

Before you finally publish your library, you should add a few more things:

• Store all example sketches in a folder named examples and copy it to the
libraries/Telegraph folder. Every example sketch should get its own subdirec-
tory within that folder.

• Choose a license for your project and copy its terms into a file named
LICENSE.3 You might think this is over the top for many libraries, but it will
give your potential audience confidence.

• Add installation instructions and documentation. Usually, users expect
to find documentation in a file named README, and they will look for
installation instructions in a file named INSTALL. You should try to install

3. At http://www.opensource.org/, you can find a lot of background information and many
standard licenses.

report erratum • discuss

Publishing Your Own Library • 71

http://media.pragprog.com/titles/msard2/code/TelegraphLibrary/keywords.txt
http://www.opensource.org/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

your library on as many operating systems as possible and provide
installation instructions for all of them.

• Publish your project on GitHub,4 Google Code,5 or any other popular sites
for hosting open-source projects. This way, other people can contribute
easily to your project.

After you’ve done all this, your libraries/Telegraph folder should look like this:

Finally, create a zip archive containing all the files in your project. On most
operating systems, it’s sufficient to right-click the directory in the Explorer,
Finder, or whatever you are using and turn the directory into a zip archive.
On Linux systems and Macs, you can also use one of the following command-
line statements to create an archive:

maik> zip -r Telegraph Telegraph
maik> tar cfvz Telegraph.tar.gz Telegraph

4. http://github.com
5. https://code.google.com/

Chapter 4. Building a Morse Code Generator Library • 72

report erratum • discuss

http://github.com
https://code.google.com/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The first command creates a file named Telegraph.zip, and the second one creates
Telegraph.tar.gz. Both formats are widespread, and it’s best to offer them both
for download.

Although you have to perform a lot of manual file operations, it’s still easy to
create an Arduino library. So, there’s no excuse: whenever you think you’ve
built something cool, make it publicly available.

Note that the structure for library projects has slightly changed in the Arduino
IDE 1.5.x and later.6 The biggest change is that all library source files (tele-
graph.h and telegraph.cpp, in our case) now have to be stored in a separate folder
named src. The new specification is backwards compatible—that is, old libraries
will still work in the new IDE.

Until now, our projects have communicated with the outside world using
LEDs (output) and pushbuttons (input). In the next chapter, you’ll learn how
to work with more sophisticated input devices, such as ultrasonic sensors.
You’ll also learn how to visualize data that an Arduino sends to programs
running on your computer.

What If It Doesn’t Work?
The Arduino IDE has a strong opinion on naming files and directories, and
it was built for creating sketches, not libraries. So, you need to perform a few
manual file operations to get everything into the right place. In the figure on
the preceding page, you can see the final directory layout. If you have more
than one version of the Arduino IDE installed, make sure you’re using the
correct libraries folder.

Remember that you have to restart the IDE often. Whenever you change one
of the files belonging to your library, restart the IDE.

If syntax coloring doesn’t work, make sure your keywords file is actually
named keywords.txt. Double-check whether you have separated all objects and
type specifiers by a tab character. Restart your IDE!

Exercises
• Morse code not only supports letters and digits, but it also defines symbols

such as commas. Improve the Telegraph class so that it understands all
characters of the Morse code.

6. https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification

report erratum • discuss

What If It Doesn’t Work? • 73

https://github.com/arduino/Arduino/wiki/Arduino-IDE-1.5:-Library-specification
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• Blinking LEDs are great, but when we think of Morse code, we usually
think of beeping sounds, so replace the LED with a piezo speaker, which
is cheap and easy to use. The following figure shows how you connect it
to an Arduino. Piezo speakers have a ground pin and a signal pin, so
connect the speaker’s ground to the Arduino’s ground, and connect the
signal pin to Arduino pin 13.

Then replace the output_symbol method with the following code:

void Telegraph::output_symbol(const int length) {
const int frequency = 131;
tone(_output_pin, frequency, length);

This sends a square wave to the speaker, and it plays a tone having a
frequency of 131 Hertz. (Look at the example under File > Examples >
02.Digital > toneMelody that comes with the Arduino IDE to learn more
about playing notes with a piezo speaker.)

• The Arduino IDE offers an alternative way to handle serial communication.
Have a look at Serial Communication Using Various Languages, on page
255, and rewrite the Morse code library so that it uses the new serialEvent
function. Also, use String objects instead of character arrays.

• Improve the library’s design to make it easier to support different output
devices. You could pass some kind of OutputDevice object to the Telegraph
constructor. Then derive a LedDevice and a SpeakerDevice from OutputDevice. It
could look as follows:

class OutputDevice {
public:
virtual void output_symbol(const int length);

};

class Led : public OutputDevice {

Chapter 4. Building a Morse Code Generator Library • 74

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

public:
void output_symbol(const int length) {

// ...
}

};

class Speaker : public OutputDevice {
public:
void output_symbol(const int length) {

// ...
}

};

You can then use these classes as follows:

Led led;
Speaker speaker;
OutputDevice* led_device = &led;
OutputDevice* speaker_device = &speaker;

led_device->output_symbol(200);
speaker_device->output_symbol(200);

The rest is up to you.

• Try to learn Morse code. Let someone else type some messages into the
serial terminal and try to recognize what that person sent. This isn’t
necessary for learning Arduino development, but it’s a lot of fun!

report erratum • discuss

Exercises • 75

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 5

Sensing the World Around Us
Instead of communicating via mouse or keyboard as with regular computers,
you need to connect special sensors to the Arduino so that it can sense
changes around it. You can attach sensors that measure the current temper-
ature, the acceleration, or the distance to the nearest object.

Sensors make up an important part of physical computing, and the Arduino
makes using various sensor types a breeze. In this chapter, we will use both
digital and analog sensors to capture some real-world state, and all we need
is a couple of wires and some small programs.

We’ll take a close look at two sensor types: an ultrasonic sensor that measures
distances and a temperature sensor that measures, well, temperatures. With
the ultrasonic sensor, we’ll build a digital metering rule to help us measure
distances remotely.

Although ultrasonic sensors deliver quite accurate results, we can still improve
their precision with some easy tricks. Interestingly, the temperature sensor
will help us with this, and at the end of the chapter, we will have created a
fairly accurate digital distance meter. We’ll also build a nice graphical appli-
cation that visualizes the data we get from the sensors.

But the Arduino doesn’t only make using sensors easy. It also encourages
good design for both your circuits and your software. For example, although
we end up using two sensors, they are completely independent. All the pro-
grams we develop in this chapter will run without changes on the final circuit.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. A Parallax PING))) sensor
2. A TMP36 temperature sensor from Analog Devices
3. A breadboard
4. Some wires
5. An Arduino board, such as the Uno, Duemilanove, or Diecimila
6. A USB cable to connect the Arduino to your computer

Measuring Distances with an Ultrasonic Sensor
Measuring distances automatically and continuously comes in handy in many
situations. Think of a robot that autonomously tries to find its way or of an
automatic burglar alarm that rings a bell or calls the police whenever someone
is too near your house or the Mona Lisa. All this is possible with Arduino.
But before you can create that burglar alarm or robot, you need to understand
some key concepts.

Many different types of sensors for measuring distances are available, and
the Arduino plays well with most of them. Some sensors use ultrasound,
while others use infrared light or even laser. But in principle all sensors work
the same way: they emit a signal, wait for the echo to return, and measure
the time the whole process took. Because we know how fast sound and light
travel through the air, we can then convert the measured time into a distance.

In our first project, we’ll build a device that measures the distance to the
nearest object and outputs it on the serial port. For this project, we use the

Chapter 5. Sensing the World Around Us • 78

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Parallax PING))) ultrasonic sensor1 because it’s easy to use, comes with
excellent documentation, and has a nice feature set. It can detect objects in
a range between 2 centimeters and 3 meters, and we use it directly with a
breadboard, so we don’t have to solder. It’s also a perfect example of a sensor
that provides information via variable-width pulses. (More on that in a few
paragraphs.) With the PING))) sensor, we can easily build a sonar or a robot
that automatically finds its way through a maze without touching a wall.

As mentioned earlier, ultrasonic sensors usually
don’t return the distance to the nearest object.
Instead, they return the time the sound needed
to travel to the object and back to the sensor.
The PING))) is no exception, and its innards are
fairly complex. Fortunately, they are hidden
behind three simple pins: power, ground, and
signal.

This makes it easy to connect the sensor to the
Arduino. First, connect Arduino’s ground and
5V power supply to the corresponding PING)))
pins. Then connect the PING)))’s sensor pin to
one of the Arduino’s digital IO pins. (We’re using
pin 7 for no particular reason.) For a diagram and for a photo of our circuit,
see Figure 15, PING))) basic circuit, on page 80 and Figure 16, Photo of PING)))
basic circuit, on page 81.

To bring the circuit to life, we need some code that communicates with the
PING))) sensor:

InputDevices/Ultrasonic/Simple/Simple.ino
const unsigned int PING_SENSOR_IO_PIN = 7;Line 1

const unsigned int BAUD_RATE = 9600;-

-

void setup() {-

Serial.begin(BAUD_RATE);5

}-

-

void loop() {-

pinMode(PING_SENSOR_IO_PIN, OUTPUT);-

digitalWrite(PING_SENSOR_IO_PIN, LOW);10

delayMicroseconds(2);-

-

digitalWrite(PING_SENSOR_IO_PIN, HIGH);-

delayMicroseconds(5);-

1. http://www.parallax.com/product/28015

report erratum • discuss

Measuring Distances with an Ultrasonic Sensor • 79

http://media.pragprog.com/titles/msard2/code/InputDevices/Ultrasonic/Simple/Simple.ino
http://www.parallax.com/product/28015
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 15—PING))) basic circuit

digitalWrite(PING_SENSOR_IO_PIN, LOW);15

-

pinMode(PING_SENSOR_IO_PIN, INPUT);-

const unsigned long duration = pulseIn(PING_SENSOR_IO_PIN, HIGH);-

if (duration == 0) {-

Serial.println("Warning: We did not get a pulse from sensor.");20

} else {-

Serial.print("Distance to nearest object: ");-

Serial.print(microseconds_to_cm(duration));-

Serial.println(" cm");-

}25

-

delay(100);-

}-

-

unsigned long microseconds_to_cm(const unsigned long microseconds) {30

return microseconds / 29 / 2;-

}-

First we define a constant for the IO pin the PING))) sensor is connected to.
If you want to connect your sensor to another digital IO pin, you have to
change the program’s first line. In the setup method, we set the serial port’s
baud rate to 9600, because we’d like to see some sensor data on the serial
monitor.

Chapter 5. Sensing the World Around Us • 80

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 16—Photo of PING))) basic circuit

The real action happens in loop, where we actually implement the PING)))
protocol. According to the data sheet,2 we can control the sensor using pulses,
and it returns results as variable-width pulses, too.

In lines 9 to 11, we set the sensor’s signal pin to LOW for 2 microseconds to
bring it to a proper state. This will ensure clean HIGH pulses that are needed
in the next steps. (In the world of electronics, you should always be prepared
for jitters in the power supply.)

Finally, it’s time to tell the sensor to do some work. In lines 13 to 15, we set
the sensor’s signal pin to HIGH for 5 microseconds to start a new measurement.
Afterward, we set the pin to LOW again, because the sensor will respond with
a HIGH pulse of variable length on the same pin.

2. http://www.parallax.com/downloads/ping-ultrasonic-distance-sensor-product-guide

report erratum • discuss

Measuring Distances with an Ultrasonic Sensor • 81

http://www.parallax.com/downloads/ping-ultrasonic-distance-sensor-product-guide
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

With a digital pin, you have only a few options to transmit information. You
can set the pin to HIGH or LOW, and you can control how long it remains in a
particular state. For many purposes, this is absolutely sufficient, and in our
case it is, too. When the PING))) sensor sends out its 40-kHz chirp, it sets the
signal pin to HIGH and then sets it back to LOW when it receives the echo. That
is, the signal pin remains in a HIGH state for exactly the time it takes the sound
to travel to an object and back to the sensor. Loosely speaking, we are using
a digital pin for measuring an analog signal. In the following figure, you can
see a diagram showing typical activity on a digital pin connected to a PING)))
sensor.

We could measure the duration the pin remains in HIGH state manually, but
the pulseIn method already does all the dirty work for us. So, we use it in line
18 after we have set the signal pin into input mode again. pulseIn accepts three
parameters:

• pin: Number of the pin to read the pulse from.

• type: Type of the pulse that should be read. It can be HIGH or LOW.

• timeout: Timeout measured in microseconds. If no pulse could be detected
within the timeout period, pulseIn returns 0. This parameter is optional
and defaults to one second.

Note that in the whole process, only one pin is used to communicate with the
PING))). Sooner or later, you’ll realize that IO pins are a scarce resource on
the Arduino, so it’s really a nice feature that the PING))) uses only one digital
pin. When you can choose between different parts performing the same task,
try to use as few pins as possible.

We have only one thing left to do: convert the duration we have measured
into a length. Sound travels at 343 meters per second, which means it needs
29.155 microseconds per centimeter. So, we have to divide the duration by
29 and then by 2, because the sound has to travel the distance twice. It
travels to the object and then back to the PING))) sensor. The microseconds_to_cm
method performs the calculation.

Chapter 5. Sensing the World Around Us • 82

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

According to the specification of the PING))) sensor, you have to wait at least
200 microseconds between two measurements. For high-speed measurements,
we could calculate the length of a pause more accurately by actually measuring
the time the code takes. But in our case this is pointless, because all the
statements that are executed during two measurements in the loop method
take far more than 200 microseconds. And outputting data to the serial con-
nection is fairly expensive. Despite this, we have added a small delay of 100
microseconds to slow down the output.

You might wonder why we use the const keyword so often. To program the
Arduino you use C/C++, and in these languages it’s considered a good practice
to declare constant values as const (see Effective C++: 50 Specific Ways to
Improve Your Programs and Designs [Mey97]). Not only will using const make
your program more concise and prevent logical errors early, but it will also
help the compiler to decrease your program’s size.

Although most Arduino programs are comparatively small, software develop-
ment for the Arduino is still software development, and it should be done
according to all the best practices we know. So, whenever you define a con-
stant value in your program, declare it as such (using const, not using #define).
This is true for other programming languages as well, so we will use final in
our Java programs, too.

Now it’s time to play around with the sensor and get familiar with its strengths
and weaknesses. Compile the program, upload it to your Arduino board, and
open the serial monitor (don’t forget to set the baud rate to 9600). You should
see something like this:

Distance to nearest object: 42 cm
Distance to nearest object: 33 cm
Distance to nearest object: 27 cm
Distance to nearest object: 27 cm
Distance to nearest object: 29 cm
Distance to nearest object: 36 cm

In addition to the output in the terminal, you will see that the LED on the
PING))) sensor is turned on whenever the sensor starts a new measurement.

Test the sensor’s capabilities by trying to detect big things or very small things.
Try to detect objects from different angles, and try to detect objects that are
below or above the sensor. You should also do some experiments with objects
that don’t have a flat surface. Try to detect stuffed animals, and you will see
that they are not detected as well as solid objects. (That’s probably why bats
don’t hunt bears—they can’t see them.)

report erratum • discuss

Measuring Distances with an Ultrasonic Sensor • 83

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

With only three wires and a few lines of code, we have built a first version of
a digital metering rule. At the moment, it outputs only centimeter distances
in whole numbers, but we’ll increase its accuracy tremendously in the next
section by changing our software and adding more hardware.

Increasing Precision Using Floating-Point Numbers
According to the specification, the PING))) sensor is accurate for objects that
are between 2 centimeters and 3 meters away. (By the way, the reason for
this is the length of the pulse that is generated. Its minimum length is 115
microseconds, and the maximum length is 18.5 milliseconds.) With our current
approach, we don’t fully benefit from its precision because all calculations
are performed using integer values. We can only measure distances with an
accuracy of a centimeter. To enter the millimeter range, we have to use
floating-point numbers.

Normally it’s a good idea to use integer operations, because compared to
regular computers the Arduino’s memory and CPU capacities are severely
limited and calculations containing floating-point numbers are often expensive.
But sometimes it’s useful to enjoy the luxury of highly accurate floating-point
numbers, and the Arduino supports them well. We’ll use them to improve
our project now:

InputDevices/Ultrasonic/Float/Float.ino
const unsigned int PING_SENSOR_IO_PIN = 7;Line 1

const unsigned int BAUD_RATE = 9600;-

const float MICROSECONDS_PER_CM = 29.155;-

const float MOUNTING_GAP = 0.2;-

const float SENSOR_OFFSET = MOUNTING_GAP * MICROSECONDS_PER_CM * 2;5

-

void setup() {-

Serial.begin(BAUD_RATE);-

}-

void loop() {10

const unsigned long duration = measure_distance();-

if (duration == 0)-

Serial.println("Warning: We did not get a pulse from sensor.");-

else-

output_distance(duration);15

}-

-

const float microseconds_to_cm(const unsigned long microseconds) {-

const float net_distance = max(0, microseconds - SENSOR_OFFSET);-

return net_distance / MICROSECONDS_PER_CM / 2;20

}-

-

-

Chapter 5. Sensing the World Around Us • 84

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/InputDevices/Ultrasonic/Float/Float.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

const unsigned long measure_distance() {-

pinMode(PING_SENSOR_IO_PIN, OUTPUT);25

digitalWrite(PING_SENSOR_IO_PIN, LOW);-

delayMicroseconds(2);-

digitalWrite(PING_SENSOR_IO_PIN, HIGH);-

delayMicroseconds(5);-

digitalWrite(PING_SENSOR_IO_PIN, LOW);30

pinMode(PING_SENSOR_IO_PIN, INPUT);-

return pulseIn(PING_SENSOR_IO_PIN, HIGH);-

}-

-

void output_distance(const unsigned long duration) {35

Serial.print("Distance to nearest object: ");-

Serial.print(microseconds_to_cm(duration));-

Serial.println(" cm");-

}-

This program doesn’t differ much from our first version. First, we use the
more accurate value 29.155 for the number of microseconds it takes sound
to travel 1 centimeter. In addition, the distance calculation now takes a
potential gap between the sensor and the case into account. If you plug the
sensor into a breadboard, usually a small gap between the sensor and the
breadboard’s edge exists. This gap is defined in line 5, and it will be used in
the distance calculation later on. The gap is measured in centimeters, and it
gets multiplied by two because the sound travels out and back.

The loop method looks much cleaner now, because the program’s main func-
tionality has been moved to separate functions. The whole sensor control
logic lives in the measure_distance method, and output_distance takes care of out-
putting values to the serial port. The big changes happened in the microsec-
onds_to_cm function. It returns a float value now, and it subtracts the sensor
gap from the measured duration. To make sure we don’t get negative values,
we use the max function.

Compile and upload the program, and you should see something like the
following in your serial monitor window:

Distance to nearest object: 17.26 cm
Distance to nearest object: 17.93 cm
Distance to nearest object: 17.79 cm
Distance to nearest object: 18.17 cm
Distance to nearest object: 18.65 cm
Distance to nearest object: 18.85 cm

This not only looks more accurate than our previous version, it actually is
more accurate. If you have worked with floating-point numbers in any pro-
gramming language before, you might ask yourself why the Arduino rounds

report erratum • discuss

Increasing Precision Using Floating-Point Numbers • 85

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

them automatically to two decimal digits. The secret lies in the print method
of the Serial class. In recent versions of the Arduino platform, it works for all
possible data types, and when it receives a float variable, it rounds it to two
decimal digits before it gets output. You can specify the number of decimal
digits. For example, Serial.println(3.141592, 4); prints 3.1416.

Only the output is affected by this; internally it is still a float variable. By the
way, on most Arduinos, float and double values are the same at the moment.
Only on the Arduino Due is double more accurate than float.

So, what does it actually cost to use float variables? Their memory consumption
is 4 bytes—that is, they consume as much memory as long variables. On the
other hand, floating-point calculations are fairly expensive and should be
avoided in time-critical parts of your software. The biggest costs are the
additional library functions that have to be linked to your program for float
support. Serial.print(3.14) might look harmless, but it increases your program’s
size tremendously.

Comment line 37 out and recompile the program to see the effect. It will no
longer work properly, but we can see how this statement affects the program
size. With my current setup, it needs 3,002 bytes without float support for
Serial.print and 5,070 bytes otherwise. That’s a difference of 2,068 bytes!

In some cases, you can still get the best of both worlds: float support without
paying the memory tax. You can save a lot of space by converting the float
values to integers before sending them over a serial connection. To transfer
values with a precision of two digits, multiply them by 100, and don’t forget
to divide them by 100 on the receiving side. We’ll use this trick (including
rounding) later.

Increasing Precision Using a Temperature Sensor
Support for floating-point numbers is an improvement, but it mainly
increases the precision of our program’s output. We could’ve achieved a
similar effect using some integer math tricks. But now we’ll add an even better
improvement that cannot be imitated using software: a temperature sensor.

When I told you that sound travels through air at 343 m/s, I wasn’t totally
accurate, because the speed of sound isn’t constant—among other things, it
depends on the air’s temperature. If you don’t take temperature into account,
the error can grow up to a quite significant 12 percent. We calculate the
actual speed of sound C with a simple formula:

C = 331.5 + (0.6 * t)

Chapter 5. Sensing the World Around Us • 86

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

To use it, we only have to determine the current temperature t in Celsius. We
will use the TMP36 voltage output temperature sensor from Analog Devices.3

It’s cheap and easy to use.

To connect the TMP36 to the Arduino, connect the Arduino’s ground and
power to the corresponding pins of the TMP36. Then connect the sensor’s
signal pin to the pin A0—that is, the analog pin number 0:

As you might’ve guessed from its vendor’s name, the TMP36 is an analog
device: it changes the voltage on its signal pin corresponding to the current
temperature. The higher the temperature, the higher the voltage. For us, it’s
an excellent opportunity to learn how to use the Arduino’s analog IO pins.
So, let’s see some code that uses the sensor:

InputDevices/Temperature/SensorTest/SensorTest.ino
const unsigned int TEMP_SENSOR_PIN = A0;Line 1

const float SUPPLY_VOLTAGE = 5.0;-

const unsigned int BAUD_RATE = 9600;-

-

void setup() {5

Serial.begin(BAUD_RATE);-

}-

-

void loop() {-

const float tempC = get_temperature();10

const float tempF = (tempC * 9.0 / 5.0) + 32.0;-

Serial.print(tempC);-

Serial.print(" C, ");-

Serial.print(tempF);-

Serial.println(" F");15

delay(1000);-

}-

-

const float get_temperature() {-

const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);20

const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;-

return (voltage * 1000 - 500) / 10;-

}-

3. http://tinyurl.com/msard-analog

report erratum • discuss

Increasing Precision Using a Temperature Sensor • 87

http://media.pragprog.com/titles/msard2/code/InputDevices/Temperature/SensorTest/SensorTest.ino
http://tinyurl.com/msard-analog
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In the first two lines, we define constants for the analog pin the sensor is
connected to and for the Arduino’s supply voltage. Then we have a pretty
normal setup method followed by a loop method that outputs the current tem-
perature every second. The whole sensor logic has been encapsulated in the
get_temperature method. It returns the temperature in degrees Celsius, and we
convert it to a Fahrenheit value, too.

For the PING))) sensor, we only needed a digital pin that could be HIGH or LOW.
Analog pins are different and represent a voltage ranging from 0V to the cur-
rent power supply (usually 5V). We can read the Arduino’s analog pins using
the analogRead method that returns a value between 0 and 1023, because
analog pins have a resolution of 10 bits (1024 = 210). We use it in line 20 to
read the current voltage supplied by the TMP36.

How to Encode Sensor Data

Encoding sensor data is a problem that has to be solved often in Arduino projects,
because all the nice data we collect usually has to be interpreted by applications
running on regular computers.

When defining a data format, you have to take several things into account. Among
others, the format shouldn’t waste the Arduino’s precious memory. In our case, we
could’ve used XML for encoding the sensor data:

<sensor-data>
<temperature>30.05</temperature>
<distance>51.19</distance>

</sensor-data>

Obviously this isn’t a good choice, because now we’re wasting a multiple of the
actual data’s memory for creating the file format’s structure. In addition, the receiving
application has to use an XML parser to interpret the data.

But you shouldn’t go to the other extreme, either. That is, you should use binary
formats only if absolutely necessary or if the receiving application expects binary data
anyway.

All in all, the simplest data formats, such as character-separated values (CSV), are
often the best choice.

There’s one problem left, though: we have to turn the value returned by
analogRead into an actual voltage value, so we must know the Arduino’s current
power supply. It usually is 5V, but there are Arduino models (such as the
Arduino Pro, for example) that use only 3.3V. You have to adjust the constant
SUPPLY_VOLTAGE accordingly.

Chapter 5. Sensing the World Around Us • 88

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We can turn the analog pin’s output into a voltage value by dividing it by
1024 and by multiplying it by the supply voltage, which we do in line 21.

We now have to convert the voltage the sensor delivers into degrees Celsius.
In the sensor’s data sheet, we find the following formula:

T = ((sensor output in mV) - 500) / 10

We have to subtract 500 millivolts because the sensor always outputs a pos-
itive voltage. This way, we can represent negative temperatures, too. The
sensor’s resolution is 10 millivolts, so we have to divide by 10. A voltage value
of 750 millivolts corresponds to a temperature of (750 - 500) / 10 = 25°C. See
it implemented in line 22.

Compile the program, upload it to the Arduino, and you’ll see something like
the following in your serial monitor:

20.80 C, 69.44 F
20.80 C, 69.44 F
20.31 C, 68.56 F
20.80 C, 69.44 F
20.80 C, 69.44 F

As you can see, the sensor needs some time to calibrate, but its results get
stable fairly quickly. By the way, you’ll always need to insert a short delay
between two calls to analogRead, because the Arduino’s internal analog system
needs some time (0.0001 seconds on the Uno) between two readings. We use
a delay of a whole second to make the output easier to read and because we
don’t expect the temperature to change rapidly. Otherwise, a delay of a single
millisecond would be enough.

Now we have two separate circuits: one for measuring distances and one for
measuring temperatures. See them combined to a single circuit in Figure 17,
The TMP36 and the PING))) sensors working together, on page 90 and Figure
18, Photo of final circuit, on page 90.

Use the following program to bring the circuit to life:

InputDevices/Ultrasonic/PreciseSensor/PreciseSensor.ino
const unsigned int TEMP_SENSOR_PIN = A0;Line 1

const float SUPPLY_VOLTAGE = 5.0;-

const unsigned int PING_SENSOR_IO_PIN = 7;-

const float SENSOR_GAP = 0.2;-

const unsigned int BAUD_RATE = 9600;5

float current_temperature = 0.0;-

unsigned long last_measurement = millis();-

-

-

report erratum • discuss

Increasing Precision Using a Temperature Sensor • 89

http://media.pragprog.com/titles/msard2/code/InputDevices/Ultrasonic/PreciseSensor/PreciseSensor.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 17—The TMP36 and the PING))) sensors working together

Figure 18—Photo of final circuit

Chapter 5. Sensing the World Around Us • 90

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void setup() {10

Serial.begin(BAUD_RATE);-

}-

-

void loop() {-

unsigned long current_millis = millis();15

if (abs(current_millis - last_measurement) >= 1000) {-

current_temperature = get_temperature();-

last_measurement = current_millis;-

}-

Serial.print(scaled_value(current_temperature));20

Serial.print(",");-

const unsigned long duration = measure_distance();-

Serial.println(scaled_value(microseconds_to_cm(duration)));-

}-

25

long scaled_value(const float value) {-

float round_offset = value < 0 ? -0.5 : 0.5;-

return (long)(value * 100 + round_offset);-

}-

30

const float get_temperature() {-

const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);-

const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;-

return (voltage * 1000 - 500) / 10;-

}35

-

const float microseconds_per_cm() {-

return 1 / ((331.5 + (0.6 * current_temperature)) / 10000);-

}-

40

const float sensor_offset() {-

return SENSOR_GAP * microseconds_per_cm() * 2;-

}-

-

const float microseconds_to_cm(const unsigned long microseconds) {45

const float net_distance = max(0, microseconds - sensor_offset());-

return net_distance / microseconds_per_cm() / 2;-

}-

-

const unsigned long measure_distance() {50

pinMode(PING_SENSOR_IO_PIN, OUTPUT);-

digitalWrite(PING_SENSOR_IO_PIN, LOW);-

delayMicroseconds(2);-

digitalWrite(PING_SENSOR_IO_PIN, HIGH);-

delayMicroseconds(5);55

digitalWrite(PING_SENSOR_IO_PIN, LOW);-

pinMode(PING_SENSOR_IO_PIN, INPUT);-

return pulseIn(PING_SENSOR_IO_PIN, HIGH);-

}-

report erratum • discuss

Increasing Precision Using a Temperature Sensor • 91

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The code is nearly a perfect merge of the programs we used to get the PING)))
and the TMP36 sensors working. Only a few things were changed:

• The constant MICROSECONDS_PER_CM has been replaced by the microsec-
onds_per_cm function, which determines the microseconds sound needs to
travel 1 centimeter dynamically, depending on the current temperature.

• Because the current temperature usually won’t change often or rapidly,
we don’t measure it permanently, but only once a second. We use millis in
line 7 to determine the number of milliseconds that have passed since
the Arduino started. From lines 15 to 19, we check whether more than a
second has passed since the last measurement. If yes, we measure the
current temperature again.

• We no longer transfer the sensor data as floating-point numbers on the
serial port, but instead use scaled integer values. This is done by the
scaled_value function, which rounds a float value to two decimal digits and
converts it into a long value by multiplying it by 100. On the receiving
side, you have to divide it by 100 again.

If you upload the program to your Arduino and play around with your hand
in front of the sensor, you’ll see an output similar to the following:

2129,1016
2129,1027
2129,1071
2129,1063
2129,1063
2129,1063

The output is a comma-separated list of values where the first value represents
the current temperature in degree Celsius, and the second is the distance to
the nearest object measured in centimeters. Both values have to be divided
by 100 to get the actual sensor data.

Our little project now has two sensors. One is connected to a digital pin, while
the other uses an analog one. In the next section, you’ll learn how to transfer
sensor data back to a PC and use it to create applications based on the current
state of the real world.

Creating Your Own Dashboard
Instead of printing our digital and analog sensor data to a serial port, we’ll
simulate a small part of a modern car’s dashboard in this section. Most cars
today show the current temperature, and many also have a parking-distance
control system that warns you if you get too close to another object.

Chapter 5. Sensing the World Around Us • 92

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Save the Climate Using Sonar Sensors

Researchers from Northwestern University and University of Michigan have created
a sonar system that uses only a computer’s microphone and speakers to detect
whether the computer is currently used.a If it’s not being used, the computer auto-
matically powers off its screen, saving the environment.

Instead of using a microphone and speakers, you can also use a PING))) sensor. With
the lessons you’ve learned in this chapter, you can build such a system yourself with
ease. Try it!

a. http://blog.makezine.com/2009/10/15/using-sonar-to-save-power/

In my car, the parking-distance control consists of a couple of orange and
red LEDs. If nothing’s near the car, all LEDs are off. As soon as the distance
between the car and a potential obstacle gets too small, the first orange LED
lights up. The shorter the distance, the more LEDs that light up. If the distance
reaches a critical limit, all LEDs are on, and the car plays an annoying beep
tone.

Here’s the application we’re going to
build. It shows the current tempera-
ture, and you can also see that the
first red light is already on, indicating
that there’s something very close to
the distance sensor.

We’ll implement the application as a
Google Chrome app. (Now is a good time to read Appendix 4, Controlling the
Arduino with a Browser, on page 267, if you haven’t done so already.) The
application’s manifest.json file contains no surprises:

InputDevices/Dashboard/manifest.json
{

"manifest_version": 2,
"name": "Dashboard Demo",
"version": "1",
"permissions": ["serial"],
"app": {

"background": {
"scripts": ["background.js"]

}
},
"minimum_chrome_version": "33"

}

report erratum • discuss

Creating Your Own Dashboard • 93

http://blog.makezine.com/2009/10/15/using-sonar-to-save-power/
http://media.pragprog.com/titles/msard2/code/InputDevices/Dashboard/manifest.json
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

It defines all meta information needed, and it declares that the Chrome App
needs to access the serial port. The background.js file isn’t very exciting, either:

InputDevices/Dashboard/background.js
chrome.app.runtime.onLaunched.addListener(function() {

chrome.app.window.create('main.html', {
id: 'main',
bounds: { width: 600, height: 300 }

});
});

It opens a new window and displays the main.html file:

InputDevices/Dashboard/main.html
<!DOCTYPE html>Line 1

<html lang="en">-

<head>-

<meta charset="utf-8"/>-

<link rel="stylesheet" type="text/css" href="css/dashboard.css"/>5

<title>Dashboard Demo</title>-

</head>-

<body>-

<div id="dashboard">-

<div id="distance-display">10

<p>-

●-

●-

●-

●15

●-

●-

●-

●-

</p>20

</div>-

<div id="temperature-display">-

<p> ℃</p>-

</div>-

</div>25

<script src="js/serial_device.js"></script>-

<script src="js/dashboard.js"></script>-

</body>-

</html>-

To create the dashboard’s user interface, we need only some basic HTML. We
define the whole parking-distance control display in lines 12 to 19. We repre-
sent each LED by a element containing the Unicode character (●)
for a filled circle. Each element gets a unique ID, so we can refer to
the individual LEDs later on.

Chapter 5. Sensing the World Around Us • 94

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/InputDevices/Dashboard/background.js
http://media.pragprog.com/titles/msard2/code/InputDevices/Dashboard/main.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The temperature display is even simpler. It consists of a single element.
We’ve added the Unicode character for a degrees Celsius symbol (℃)
to make it look more professional. Let’s add a little bit of CSS to make the
dashboard even more appealing:

InputDevices/Dashboard/css/dashboard.css
body {

font-size: 50px;
background: black;
color: white;

}

#distance-display,
#temperature-display {

text-align: center;
}

The stylesheet increases the font size and sets the background color to black
and the text color to white. Also, it centers both the LED display and the
temperature display.

Now it’s time to bring the dashboard to life using some JavaScript:

InputDevices/Dashboard/js/dashboard.js
var arduino = new SerialDevice("/dev/tty.usbmodem24321", 9600);Line 1

-

arduino.onConnect.addListener(function() {-

console.log("Connected to: " + arduino.path);-

});5

-

arduino.onReadLine.addListener(function(line) {-

console.log("Read line: " + line);-

var attr = line.split(",");-

if (attr.length == 2) {10

var temperature = Math.round(parseInt(attr[0]) / 100.0 * 10) / 10;-

var distance = parseInt(attr[1]) / 100.0;-

updateUI(temperature, distance);-

}-

});15

-

var lights = {-

d1: [35.0, "orange"],-

d2: [30.0, "orange"],-

d3: [25.0, "orange"],20

d4: [20.0, "orange"],-

d5: [15.0, "orange"],-

d6: [10.0, "orange"],-

d7: [7.0, "red"],-

d8: [5.0, "red"]25

};-

report erratum • discuss

Creating Your Own Dashboard • 95

http://media.pragprog.com/titles/msard2/code/InputDevices/Dashboard/css/dashboard.css
http://media.pragprog.com/titles/msard2/code/InputDevices/Dashboard/js/dashboard.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

function updateUI(temperature, distance) {-

document.getElementById("temperature").innerText = temperature;-

for (var i = 1; i < 9; i++) {30

var index = "d" + i;-

if (distance <= lights[index][0])-

document.getElementById(index).style.color = lights[index][1];-

else-

document.getElementById(index).style.color = "white";35

}-

}-

-

arduino.connect();-

To read the sensor data from the Arduino, we use the SerialDevice class we’ve
defined in Writing a SerialDevice Class, on page 274. We create a new instance
named arduino in the first line. Make sure you’re using the right serial port
path.

Then we define an onConnect handler that prints a message to the browser’s
JavaScript console as soon as the application has connected to an Arduino.
In principle, you don’t need the onConnect handler. In this case, it’s mostly
useful for debugging purposes.

Things get more interesting in the onReadLine handler. In line 9, we split the
data we’ve received from the Arduino. We make sure that we’ve actually
received two values. In this case we turn both values into numbers using
parseInt, and we also divide them by 100 because the Arduino sends values
that have been multiplied by 100 before. In line 11, we use a popular Java-
Script trick to round the temperature value to one decimal digit. After we’ve
turned both the distance and the temperature into proper numbers, we pass
them to updateUI.

updateUI sets the new temperature value first in line 29. To do this, it looks up
the HTML element having the ID temperature using the getElementById function.
Then it sets the element’s innerText property to the current temperature.

Updating the artificial LED display is a bit more complex, but not too difficult.
We’ve defined a data structure named lights that maps the IDs of our display’s
 elements to arrays having two elements each. For example, it maps
the ID d1 to an array containing the values 35.0 and “orange”. That means
that the color of the element having the ID d1 will be set to orange when the
distance to the next object is less than or equal 35.0 centimeters.

Using the lights data structure, it’s easy to implement the LED display. In line
30, we start a loop iterating over all LEDs. We determine the current LED’s

Chapter 5. Sensing the World Around Us • 96

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

ID in line 31. Then we check whether the current distance is less than or
equal to the threshold value that belongs to the current LED. If yes, we change
the LED’s color accordingly. Otherwise, we set its color to white.

Some Fun with Sensors

With an ultrasonic sensor, you can easily detect whether someone is nearby. This
automatically brings a lot of useful applications to mind. You could open a door
automatically as soon as someone is close enough, for example.

Alternatively, you can use advanced technology for pure fun. What about some Hal-
loween gimmicks, such as a pumpkin that shoots silly string whenever you cross an
invisible line?a It could be a nice gag for your next party, and you can build it using
the PING))) sensor.

a. http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/

Connect the Arduino to your computer and upload the sketch we developed
in the previous section. Start the Chrome App and move your hand back and
forth in front of the PING))) sensor. The display on the screen will look exactly
like the display in a typical car.

Sensors are an exciting topic, and in this chapter you’ve learned the basics
of working with both analog and digital sensors. In the next chapter, we’ll
build on that foundation and connect the Arduino to an accelerometer to
create a motion-sensing game controller.

What If It Doesn’t Work?
See What If It Doesn’t Work?, on page 59, and make sure that you’ve connected
all parts properly to the breadboard. Take special care with the PING))) and
the TMP36 sensors, because you haven’t worked with them before. Make sure
you’ve connected the right pins to the right connectors of the sensors.

In case of any errors with the software—no matter whether it’s JavaScript or
Arduino code—download the code from the book’s website and see whether
it works.

If you have problems with serial communication, double-check whether you’ve
used the right serial port and the right Arduino type. Remember to adjust
the path to your Arduino’s serial port in the first line of dashboard.js. Also check
whether the baud rate in the JavaScript code matches the baud rate you’ve
used in the Arduino code.

report erratum • discuss

What If It Doesn’t Work? • 97

http://www.instructables.com/id/Arduino-controlled-Silly-String-shooter/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Make sure that the serial port isn’t blocked by another application, such as
a serial monitor window you forgot to close.

Exercises

• Build an automatic burglar alarm that shows a stop sign whenever
someone is too close to your computer.4 Make the application as smart
as possible. It should have a small activation delay to prevent it from
showing a stop sign immediately when it’s started.

• The speed of sound depends not only on the temperature, but also on
humidity and atmospheric pressure. Do some research to find the right
formula and the right sensors. Use your research results to make the
circuit for measuring distances even more precise.

• Use an alternative technology for measuring distances—for example, an
infrared sensor. Try to find an appropriate sensor, read its data sheet,
and build a basic circuit so you can print the distance to the nearest
object to the serial port.

4. You can find a stop sign here: http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg.

Chapter 5. Sensing the World Around Us • 98

report erratum • discuss

http://en.wikipedia.org/wiki/File:Stop_sign_MUTCD.svg
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 6

Building a Motion-Sensing Game Controller
It’s astonishing how quickly we get used to new technologies. A decade ago,
not many people would’ve imagined that we would use devices someday to
follow our movements. Today, it’s absolutely normal for us to physically turn
our smartphones when we want to change from portrait to landscape view.
Even small children intuitively know how to use motion-sensing controllers
for video game consoles, such as Nintendo’s Wii. You can build your own
motion-sensing devices using an Arduino, and in this chapter you’ll learn
how.

We’ll work with one of the most widespread motion-sensing devices: the
accelerometer. Accelerometers detect movement in all directions—they notice
if you move them up or down (Z-axis), forward or backward (Y-axis), and to
the left or to the right (X-axis). Many popular gadgets, such as the iPhone
and the Nintendo Wii controllers, contain accelerometers, so accelerometers
are produced in large quantities. That’s why they’re cheap.

Both fun and serious projects can benefit from accelerometers. When working
with your computer, you certainly think of devices, such as game controllers
or other input control devices, that you connect via USB. But you can also
use them when exercising or to control a real-life marble maze. They are also
the right tool for measuring acceleration indirectly, such as in a car.

You will learn how to interpret accelerometer data correctly and how to get
the most accurate results. Then you’ll use an accelerometer to build a motion-
sensing game controller, and in the next chapter you’ll implement a game
that uses it.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. An Arduino Proto Shield (optional)
2. An ADXL335 accelerometer
3. A pushbutton
4. A 10kΩ resistor
5. Some wires
6. A half-size breadboard (if you’re not using a Proto Shield)
7. An Arduino board, such as the Uno, Duemilanove, or Diecimila
8. A USB cable to connect the Arduino to your computer
9. A 6-pin 0.1-inch standard header

Wiring Up the Accelerometer
There are many different accelerometers, differing mainly in the number of
spatial axes they support (usually two or three). I’ll use the ADXL335 from
Analog Devices—it’s easy to use and widely available.1 Analog Devices offers
many more accelerometers, named ADXL345, ADXL377, or ADXL326, for
example. They all work the same, and they differ only in accuracy and price.

In this section, we’ll connect the ADXL335 to the Arduino and create a small
demo program showing the raw data the sensor delivers. At that point, we
will have a quick look at the sensor’s specification and interpret the data.

1. http://www.analog.com/en/sensors/inertial-sensors/adxl335/products/product.html

Chapter 6. Building a Motion-Sensing Game Controller • 100

report erratum • discuss

http://www.analog.com/en/sensors/inertial-sensors/adxl335/products/product.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

This picture shows a breakout board containing an ADXL335 sensor on the
right. The sensor is the small black integrated circuit (IC), and the rest is just
a carrier to allow connections. On the top, you see a 6-pin 0.1-inch standard
header. The sensor has six connectors, labeled GND, Z, Y, X, VCC, and ST.
To use the sensor on a breadboard, solder the standard header to the connec-
tors. This not only makes it easier to attach the sensor to a breadboard, but
it also stabilizes the sensor so it doesn’t move accidentally. You can see the
result on the left side of the photo. (Note that the breakout board on the left
isn’t the same as on the right, but it’s very similar.) Don’t worry if you’ve
never soldered before. In Learning How to Solder, on page 243, you can learn
how to do it.

You can ignore the connector labeled ST, and the meaning of the remaining
connectors should be obvious. To power the sensor, connect GND to the
Arduino’s ground pin and VCC to the Arduino’s 3.3V power supply. X, Y, and
Z will then deliver acceleration data for the x-, y-, and z-axes.

Note that not all breakout boards have the same connectors. Usually, they
have six or seven connectors. Some breakout boards can cope with 5V, while
others only work with 3.3V. Some boards have an input pin named VIN that
you have to connect to one of the Arduino’s power supply pins (5V or 3.3V).

Like the TMP36 temperature sensor we used in Increasing Precision Using a
Temperature Sensor, on page 86, the ADXL335 is an analog device: it delivers
results as voltages that have to be converted into acceleration values. So, the
X, Y, and Z connectors have to be connected to three analog pins on the
Arduino. We connect Z to analog pin 0, Y to analog pin 1, and X to analog
pin 2. (See the following image and double-check the pin labels on the

report erratum • discuss

Wiring Up the Accelerometer • 101

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

breakout board you’re using!) Naturally, you’ll move around the accelerometer
a lot, so it’s best to use long wires.

Now that we’ve connected the ADXL335 to the Arduino, let’s use it.

Bringing Your Accelerometer to Life
A pragmatic strategy to get familiar with a new device is to hook it up and
see what data it delivers. The following program reads input values for all
three axes and outputs them to the serial port:

MotionSensor/SensorTest/SensorTest.ino
const unsigned int X_AXIS_PIN = A2;
const unsigned int Y_AXIS_PIN = A1;
const unsigned int Z_AXIS_PIN = A0;
const unsigned int BAUD_RATE = 9600;

void setup() {
Serial.begin(BAUD_RATE);

}

void loop() {
Serial.print(analogRead(X_AXIS_PIN));
Serial.print(" ");
Serial.print(analogRead(Y_AXIS_PIN));
Serial.print(" ");
Serial.println(analogRead(Z_AXIS_PIN));
delay(100);

}

Chapter 6. Building a Motion-Sensing Game Controller • 102

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/MotionSensor/SensorTest/SensorTest.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Our test program is as simple as it can be. We define constants for the three
analog pins and initialize the serial port in the setup function. Note that we
didn’t set the analog pins to INPUT explicitly, because that’s the default anyway.

In the loop function, we constantly output the values we read from the analog
pins to the serial port. Open the serial monitor and move the sensor around
—tilt it around the different axes. You should see output like this:

344 331 390
364 276 352
388 286 287
398 314 286
376 332 289
370 336 301

These values represent the data we get for the x-, y-, and z-axes. When you
move the sensor only around the x-axis, for example, you can see that the
first value changes accordingly. In the next section, we’ll take a closer look
at these values.

Finding and Polishing Edge Values
The physical world often is far from perfect. That’s especially true for the data
many sensors emit, and accelerometers are no exception. They vary slightly
in the minimum and maximum values they generate, and they often jitter.
They might change their output values even though you haven’t moved them,
or they might not change their output values correctly. In this section, we’ll
determine the sensor’s minimum and maximum values, and we’ll flatten the
jitter.

Finding the edge values of the sensor is easy, but it cannot be easily automat-
ed. You have to constantly read the sensor’s output while moving it. Here’s
a program that does the job:

MotionSensor/SensorValues/SensorValues.ino
const unsigned int X_AXIS_PIN = A2;
const unsigned int Y_AXIS_PIN = A1;
const unsigned int Z_AXIS_PIN = A0;
const unsigned int BAUD_RATE = 9600;

int min_x, min_y, min_z;
int max_x, max_y, max_z;

void setup() {
Serial.begin(BAUD_RATE);
min_x = min_y = min_z = 1000;
max_x = max_y = max_z = -1000;

}

report erratum • discuss

Finding and Polishing Edge Values • 103

http://media.pragprog.com/titles/msard2/code/MotionSensor/SensorValues/SensorValues.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void loop() {
const int x = analogRead(X_AXIS_PIN);
const int y = analogRead(Y_AXIS_PIN);
const int z = analogRead(Z_AXIS_PIN);

min_x = min(x, min_x); max_x = max(x, max_x);
min_y = min(y, min_y); max_y = max(y, max_y);
min_z = min(z, min_z); max_z = max(z, max_z);

Serial.print("x(");
Serial.print(min_x);
Serial.print("/");
Serial.print(max_x);
Serial.print("), y(");
Serial.print(min_y);
Serial.print("/");
Serial.print(max_y);
Serial.print("), z(");
Serial.print(min_z);
Serial.print("/");
Serial.print(max_z);
Serial.println(")");

}

We declare variables for the minimum and maximum values of all three axes,
and we initialize them with numbers that are definitely out of the sensor’s
range (-1000 and 1000). In the loop function, we permanently measure the
acceleration of all three axes and adjust the minimum and maximum values
accordingly.

Compile and upload the sketch, then move the breadboard with the sensor
in all directions, and then tilt it around all axes. Move it slowly, move it fast,
tilt it slowly, and tilt it fast. Be careful when moving and rotating the bread-
board that you don’t accidentally loosen a connection.

After a short while, the minimum and maximum values will stabilize, and
you should get output like this:

x(247/649), y(253/647), z(278/658)

Write down these values, because we’ll need them later, and you’ll probably
need them when you do your own sensor experiments.

Now let’s see how to get rid of the jitter. In principle, it’s simple. Instead of
returning the acceleration data immediately, we collect the last readings and
return their average. This way, small changes will be ironed out. The code
looks as follows:

Chapter 6. Building a Motion-Sensing Game Controller • 104

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

MotionSensor/Buffering/Buffering.ino
const unsigned int X_AXIS_PIN = 2;Line 1

const unsigned int Y_AXIS_PIN = 1;-

const unsigned int Z_AXIS_PIN = 0;-

const unsigned int NUM_AXES = 3;-

const unsigned int PINS[NUM_AXES] = {5

X_AXIS_PIN, Y_AXIS_PIN, Z_AXIS_PIN-

};-

const unsigned int BUFFER_SIZE = 16;-

const unsigned int BAUD_RATE = 9600;-

int buffer[NUM_AXES][BUFFER_SIZE];10

int buffer_pos[NUM_AXES] = { 0 };-

-

void setup() {-

Serial.begin(BAUD_RATE);-

}15

-

int get_axis(const int axis) {-

delay(1);-

buffer[axis][buffer_pos[axis]] = analogRead(PINS[axis]);-

buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;20

long sum = 0;-

for (unsigned int i = 0; i < BUFFER_SIZE; i++)-

sum += buffer[axis][i];-

return round(sum / BUFFER_SIZE);-

}25

-

int get_x() { return get_axis(0); }-

int get_y() { return get_axis(1); }-

int get_z() { return get_axis(2); }-

void loop() {30

Serial.print(get_x());-

Serial.print(" ");-

Serial.print(get_y());-

Serial.print(" ");-

Serial.println(get_z());35

}-

As usual, we define some constants for the pins we use first. This time, we
also define a constant named NUM_AXES that contains the number of axes we
are measuring. We also have an array named PINS that contains a list of the
pins we use. This will help us keep our code more generic later.

In line 10, we declare buffers for all axes. They will be filled with the sensor
data we measure, so we can calculate average values when we need them.
We have to store our current position in each buffer, so in line 11, we define
an array of buffer positions.

setup only initializes the serial port; the real action takes place in get_axis.

report erratum • discuss

Finding and Polishing Edge Values • 105

http://media.pragprog.com/titles/msard2/code/MotionSensor/Buffering/Buffering.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

It starts with a small delay to give the Arduino some time to switch between
analog pins; otherwise, you might get bad data. Then it reads the acceleration
for the axis we have passed and stores it at the current buffer position
belonging to the axis. It increases the buffer position and sets it back to zero
when the end of the buffer has been reached. Finally, we return the average
value of the data we have gathered so far for the current axis.

That’s the whole trick, and the data structure we’ve just built is named circular
buffer.2 To see its effect, leave the sensor untouched on your desk and run the
program with different buffer sizes. If you don’t touch the sensor, you wouldn’t
expect the program’s output to change. But if you set BUFFER_SIZE to 1, you
will quickly see small changes. They will disappear as soon as the buffer is
big enough.

The acceleration data we measure now is accurate enough that we can finally
build a game controller that won’t annoy users with unexpected movements.

Building Your Own Game Controller
To build a full-blown game controller, we only need to add a button to our
breadboard. Figure 19, Game controller with accelerometer and pushbutton,
on page 107 shows you how to do it. (Please double-check the pin labels on
your breakout board!)

That’s how it looks inside a typical modern game controller. We won’t build
a fancy housing for the controller, but we still should think about ergonomics
for a moment. Our current breadboard solution is rather fragile (see the fol-
lowing figure), and you cannot really wave around the board when it’s con-
nected to the Arduino. Sooner or later you’ll disconnect some wires, and the
controller will stop working.

To solve this problem, you could try to attach the breadboard to the Arduino
using some rubber bands. That works, but it doesn’t look very pretty, and
it’s still hard to handle.

A much better solution is to use an Arduino Proto Shield—a pluggable
breadboard that lets you quickly build circuit prototypes. The breadboard is
surrounded by the Arduino’s pins, so you no longer need long wires. Shields
are a great way to enhance an Arduino’s capabilities, and you can get shields
for many different purposes, such as adding Ethernet, sound, displays, and
so on. The figure on page 108 shows a bare Proto Shield and a shield containing
our motion sensor.

2. http://en.wikipedia.org/wiki/Circular_buffer

Chapter 6. Building a Motion-Sensing Game Controller • 106

report erratum • discuss

http://en.wikipedia.org/wiki/Circular_buffer
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 19—Game controller with accelerometer and pushbutton

Now that the hardware is complete, we need a final version of the game con-
troller software. It supports the button we’ve added, and it performs the anti-
jittering we created in Finding and Polishing Edge Values, on page 103:

MotionSensor/Controller/Controller.ino
#include <Bounce2.h>
const unsigned int BUTTON_PIN = 7;
const unsigned int X_AXIS_PIN = A2;
const unsigned int Y_AXIS_PIN = A1;
const unsigned int Z_AXIS_PIN = A0;
const unsigned int NUM_AXES = 3;
const unsigned int PINS[NUM_AXES] = {

X_AXIS_PIN, Y_AXIS_PIN, Z_AXIS_PIN
};

report erratum • discuss

Building Your Own Game Controller • 107

http://media.pragprog.com/titles/msard2/code/MotionSensor/Controller/Controller.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 20—An empty Proto Shield (left), and one holding our game controller (right)

const unsigned int BUFFER_SIZE = 16;
const unsigned int BAUD_RATE = 38400;
int buffer[NUM_AXES][BUFFER_SIZE];
int buffer_pos[NUM_AXES] = { 0 };
boolean button_pressed = false;

Bounce button;

void setup() {
Serial.begin(BAUD_RATE);
pinMode(BUTTON_PIN, INPUT);
button.attach(BUTTON_PIN);
button.interval(20);

}

int get_axis(const int axis) {
delay(1);
buffer[axis][buffer_pos[axis]] = analogRead(PINS[axis]);
buffer_pos[axis] = (buffer_pos[axis] + 1) % BUFFER_SIZE;

long sum = 0;
for (unsigned int i = 0; i < BUFFER_SIZE; i++)

sum += buffer[axis][i];
return round(sum / BUFFER_SIZE);

}
int get_x() { return get_axis(0); }
int get_y() { return get_axis(1); }
int get_z() { return get_axis(2); }

Chapter 6. Building a Motion-Sensing Game Controller • 108

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void loop() {
Serial.print(get_x());
Serial.print(" ");
Serial.print(get_y());
Serial.print(" ");
Serial.print(get_z());
Serial.print(" ");
if (button.update()) {

button_pressed = button.read() == HIGH;
}
Serial.println(button_pressed == HIGH ? "1" : "0");
delay(10);

}

As in Building a Dice Game, on page 55, we use the Bounce class to debounce
the button. The rest of the code is pretty much standard, and the only thing
worth mentioning is that we use a 38,400 baud rate to transfer the controller
data sufficiently fast.

Compile and upload the code, open the serial terminal, and play around with
the controller. Move it, press the button sometimes, and it should output
something like the following:

324 365 396 0
325 364 397 0
325 364 397 1
325 364 397 0
325 365 397 0
325 365 397 1
326 364 397 0

A homemade game controller is nice, and you can use it for many projects.
For example, you could use it to control devices such as a robot, a marble
maze, or something similar. Its original purpose is to control games, so we’ll
build one in the next chapter.

More Projects
If you keep your eyes open, you’ll quickly find many more applications for
accelerometers than you might imagine. Here’s a small collection of both
commercial and free products:

report erratum • discuss

More Projects • 109

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• It’s a lot of fun to create a marble maze computer game and control it
using the game controller we built in this chapter. How much more fun
will it be to build a real marble maze?3

• In this chapter, we have measured only direct acceleration; that is, we
usually have the accelerometer in our hand and move it. But you can also
build many interesting projects that measure indirect acceleration, such
as when you are driving a car.4

What If It Doesn’t Work?
All advice from What If It Doesn’t Work?, on page 97, also applies to the project
in this section. In addition, you should check whether you’ve soldered the
pin header correctly to the breakout board. Use a magnifying glass and study
every single solder joint carefully. Did you use enough solder? Did you use
too much and connect two joints?

Exercises
• To get a better feeling for the data the accelerometer emits, you should

write a few more sketches that focus on a particular axis. Write a sketch
that outputs only the current value for the X-axis, for example. Turn an
LED on when the X-axis value is above a predefined threshold value.
Otherwise, turn it off.

3. http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-
accelerometer.html

4. http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm

Chapter 6. Building a Motion-Sensing Game Controller • 110

report erratum • discuss

http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html
http://www.electronicsinfoline.com/New/Everything_Else/marble-maze-that-is-remote-controlled-using-an-accelerometer.html
http://www.dimensionengineering.com/appnotes/Gmeter/Gmeter.htm
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 7

Writing a Game for the
Motion-Sensing Game Controller

To test our game controller, we’ll program a simple Breakout1 clone in Java-
Script. The player’s goal is to destroy all bricks in the upper half of the screen
using a ball. It’ll look something like the following figure.

Figure 21—Our Breakout clone
Background image credit: ESA/Hubble, NASA, Digitized SkySurvey, MPG/ESO.

Acknowledgment: Davide de Martin

1. http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29

report erratum • discuss

http://en.wikipedia.org/wiki/Breakout_%28arcade_game%29
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

To control the ball with the paddle at the bottom of the screen, you can tilt
the controller around the x-axis to move the paddle horizontally. The game
runs in a web browser, and it communicates with the Arduino via a serial
port. It reads the game controller’s state several times per second to determine
the controller’s current x-axis position.

Although this isn’t a book about game programming, it won’t hurt to take a
look at the game’s innards, especially because game programming with
JavaScript is really pure fun! Also, JavaScript is very popular. It’s available
on nearly every computer, because all modern web browsers come with
JavaScript interpreters.

We’ll implement the game as a Google Chrome app, so make sure you’ve read
Appendix 4, Controlling the Arduino with a Browser, on page 267. The Chrome
app implements the game’s logic, and it talks to our game controller via serial
port. It reads the current controller state and turns it into movements of our
paddle on the screen.

Writing a GameController Class
With the SerialDevice class from Writing a SerialDevice Class, on page 274, it’s
easy to create a GameController class that provides even more convenient access
to our motion-sensing Arduino. Here’s its constructor function:

BrowserGame/GameController/js/game_controller.js
var GameController = function(path, threshold) {

this.arduino = new SerialDevice(path);
this.threshold = threshold || 325;
this.moveLeft = false;
this.moveRight = false;
this.buttonPressed = false;
this.boundOnReadLine = this.onReadLine.bind(this);
this.arduino.onReadLine.addListener(this.boundOnReadLine);
this.arduino.connect();

}

This function defines several properties. First, it creates a property named
arduino and initializes it with a new SerialDevice object. The next property defines
a threshold for the game controller’s x-axis. To check whether a user has
tilted the game controller to the left or to the right, we need to know the con-
troller’s resting point. Instead of looking for the exact resting point, we’ll add
some tolerance, and that’s the value we’ll store in threshold.

The following three properties are all Boolean flags representing the controller’s
current state. If moveLeft is true, the user has moved the controller to the left.

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 112

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/GameController/js/game_controller.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Eventually, we add our own onReadLine listener to the SerialDevice object and use
our usual bind trick.

The onReadLine listener interprets the data we get from the Arduino:

BrowserGame/GameController/js/game_controller.js
GameController.prototype.onReadLine = function(line) {

const TOLERANCE = 5;
var attr = line.trim().split(' ');
if (attr.length == 4) {

this.moveRight = false;
this.moveLeft = false;
var x = parseInt(attr[0]);
if (x <= this.threshold - TOLERANCE) {
this.moveLeft = true;

} else if (x >= this.threshold + TOLERANCE) {
this.moveRight = true;

}

this.buttonPressed = (attr[3] == '1');
}
var message = 'moveLeft(' + this.moveLeft + '), ' +

'moveRight (' + this.moveRight + '), ' +
'buttonPressed(' + this.buttonPressed + ')';

console.log(message);
document.getElementById('output').innerText = message;

}

The method splits the line it receives at each blank character. Then it makes
sure that the line contains exactly four attributes. If yes, it checks whether
the current X position is to the left or to the right of the controller’s tipping
point. Note that we use the threshold value here to make the movement
detection smoother.

Finally, the method checks whether the controller’s button is currently
pressed. Also, it writes the controller’s current state to the console.

By the way, if you’d like to control the game using a Nunchuk later on (see
Chapter 9, Tinkering with the Wii Nunchuk, on page 145), you only have to
adjust the GameController class.

In Figure 22, The game controller communicates with a Chrome app, on page
114, you can see the output of a sample Chrome app that outputs the game
controller’s state to the JavaScript console.

We can now conveniently combine Chrome apps with our motion-sensing
controller. In the next section, you’ll learn how to create a more advanced
application using these techniques.

report erratum • discuss

Writing a GameController Class • 113

http://media.pragprog.com/titles/msard2/code/BrowserGame/GameController/js/game_controller.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 22—The game controller communicates with a Chrome app.

Creating the Game
At this point you know enough about Chrome apps and controlling a motion-
sensing game controller to create an entertaining video game. Writing a video
game isn’t directly related to programming the Arduino. Still, it’ll show you
some techniques you can use in other projects, and it’ll give you a much
better understanding of how the integration of hardware and software works.

Before you dive into the code, download it from the book’s website2 and play
the game. Doing so will help you find your way through the code much easier.

When programming a browser game, you usually start with its HTML code.
In our case it looks like this:

BrowserGame/Arduinoid/main.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8"/>
<link rel="stylesheet" type="text/css" href="css/arduinoid.css"/>
<title>Arduinoid</title>

2. http://www.pragprog.com/titles/msard2

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 114

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/main.html
http://www.pragprog.com/titles/msard2
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

</head>
<body>

<div id="game">
<div id="playfield">

<div id="paddle"></div>
<div id="ball"></div>
<div id="winner" class="message">

<p>You win!</p>
</div>
<div id="game_over" class="message">

<p>Game Over</p>
</div>

</div>
<div id="stats">

<div>Lives: </div>
<div>Score: </div>

</div>
</div>
<audio src="sound/awake10_megaWall.mp3" autoplay loop/>
<script src="js/jquery-1.11.1.min.js"></script>
<script src="js/serial_device.js"></script>
<script src="js/game_controller.js"></script>
<script src="js/arduinoid.js"></script>

</body>
</html>

There’s nothing special about this HTML document. At the top we associate
the document with a style sheet named arduinoid.css. We’ll specify all things
related to layout in this file.

Next, we define a couple of <div> elements. The main element has its id
attribute set to game, and it contains all the other elements. Most elements
are fairly self-explanatory. The playfield element is where the action happens.
It hosts a paddle and a ball. These elements represent the game’s main
objects—that is, the player’s paddle and the ball.

The winner and game_over elements contain messages we’ll display in case the
player has won or lost the game. They’ll be invisible when the game starts.

In the stats element, you can find the game’s most important statistical infor-
mation: the number of lives left and the current score.

After that, we add a cool chiptune3 created by Alex Smith4 to the game using
the audio element. The autoplay attribute starts the song immediately, and the
loop attribute makes it loop forever. It’s a great song, so that doesn’t hurt.

3. http://opengameart.org/content/awake-megawall-10
4. http://cynicmusic.com/

report erratum • discuss

Creating the Game • 115

http://opengameart.org/content/awake-megawall-10
http://cynicmusic.com/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Finally, we import all the JavaScript code we need. The jQuery5 library is a
very popular tool for creating dynamic web applications. It makes it very easy
to manipulate HTML elements, and it’ll make our life much easier.

You already know the serial_device.js and game_controller.js files. The arduinoid.js file
is more interesting because it contains the actual game logic. It starts with
the definition of a few data structures holding the game’s most important
status information:

BrowserGame/Arduinoid/js/arduinoid.js
const MAX_LIVES = 5;

var GameStates = {
RUNNING: 'running',
PAUSED: 'paused',
LOST: 'lost',
WON: 'won'

}

var Game = {
lives: MAX_LIVES,
score: 0,
state: GameStates.PAUSED,

paddle: {
speed: 15,
width: $("#paddle").width(),
height: $("#paddle").height()

},

playfield: {
width: $("#playfield").width(),
height: $("#playfield").height(),
rows: 4,
columns: 10

},

ball: {
diameter: $("#ball").width(),
vx: 5 + Math.random() * 5,
vy: -10

},

controller: new GameController('/dev/tty.usbmodem24321')
}

5. http://jquery.com/

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 116

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://jquery.com/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

First of all, it defines a constant named MAX_LIVES that contains the maximum
number of lives in the game. This is the place to go for cheaters. The GameStates
map defines the game’s possible states. This is a very common pattern in
game programming, and you’ll see later how easy it is to write the game’s
main loop when you identify the game states properly.

The Game object defines all of the game’s properties, such as the current score,
the number of lives left, and the game’s current state. It also contains all
information about the game’s object, such as the ball’s current velocity in all
directions or the paddle’s speed. Of course, it also defines a GameController
object, and you have to adjust the path to the Arduino’s serial port.

Most of the Game objects are constants at the beginning; we set only the ball’s
velocity in the X direction to a random value. This way, the ball won’t always
go into the same direction each time you start a new round.

Note that we use jQuery functions for the first time when we determine the
width and height of the game objects. Look at the following piece of code:

width: $("#paddle").width()

It looks cryptic at first, but it should be obvious that it somehow determines
the paddle’s width. Therefore, it uses jQuery’s most important method. Its
name is $ (yes, you can actually define a JavaScript function named $), and
it’s a versatile method you can use for various purposes.

The $ function expects a single argument you can use to specify a certain
element in your current HTML page. To identify the element, you can use the
usual CSS selectors. In our case, we’d like to get the element with the ID
paddle, and in CSS you can look up elements specified by an ID by inserting
the # character before the ID.

After we’ve retrieved the element we’re looking for, we use jQuery’s width method
to read its width. jQuery offers many more methods for accessing all possible
CSS attributes. Using these methods for getting and setting CSS attributes
is much easier than using JavaScript’s native functions for looking up and
manipulating elements on the current HTML page.

Now that we’ve set up the game’s data structures, we can implement the
game’s main logic. We start by defining a few methods for initializing and
resetting the game.

BrowserGame/Arduinoid/js/arduinoid.js
function initGame() {Line 1

Game.state = GameStates.PAUSED;-

Game.lives = MAX_LIVES;-

report erratum • discuss

Creating the Game • 117

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Game.score = 0;-

resetMovingObjects();5

updateStatistics();-

drawPlayfield();-

}-

-

function resetMovingObjects() {10

$("#paddle").css("left", (Game.playfield.width - Game.paddle.width) / 2);-

$("#ball").css("left", (Game.playfield.width - Game.ball.diameter) / 2);-

$("#ball").css("top", parseInt($("#paddle").css("top")) - Game.paddle.height);-

}-

15

function updateStatistics() {-

$('#lives').text(Game.lives);-

$('#score').text(Game.score);-

}-

20

function drawPlayfield() {-

var colors = ['blue', 'green', 'red', 'yellow'];-

var $playfield = $('#playfield');-

$playfield.children('.row').remove();-

25

for (var row = 0; row < Game.playfield.rows; row++) {-

var $row = $('<div class="row"></div>');-

$row.appendTo($playfield);-

for (var col = 0; col < Game.playfield.columns; col++) {-

var $block = $("<div class='block'></div>");30

$block.css("background", 'url("img/' + colors[row] + '.png")');-

$block.appendTo($row);-

}-

}-

}35

initGame pretty much deserves its name, because it actually initializes the
game. It sets a few properties of the Game object to their default values
directly. Then it calls several functions for initializing specific game objects.
resetMovingObjects sets the positions of the ball and the paddle to their default
values. The paddle appears at the middle of the playfield’s bottom. The ball
then sits on top of the paddle.

updateStatistics copies the current number of lives and the current score to the
HTML page. It uses jQuery’s text method to set the text of the elements speci-
fied by the IDs lives and score. In the initGame function, the game’s default values
will be copied, of course, but we’ll call this function later on, when the game
is running.

The drawPlayfield function draws the bricks that the player has to hit with the
ball. It creates four <div> elements with their class attribute set to row. Within

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 118

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

each row element, it creates ten <div> elements of class block. To achieve this,
it first removes all row elements that might exist already in line 24. Again,
we use jQuery to our advantage. The children method returns all children of
the playfield element having the class row. The remove method removes all of
these elements from the HTML page.

Note that variable names can contain the $ character, too, in JavaScript. We
use it for naming variables such as $playfield that refer to jQuery objects, which
is a helpful convention.

With two nested for loops, we create the bricks afterwards. Here we use the
omnipotent $ function again to create all the <div> elements we need. If you
pass a string containing HTML code to the $ method, it actually creates the
element. In line 27 we create a new row, and in the following line we insert
the newly created row into the current HTML page.

In the following for loop, we do the same for the actual blocks. Here we not
only create the <div> elements, but we also set their background property to an
image depending on the block’s row. The images are gradient images that
make the blocks more colorful.

Now that the game has been initialized, we can implement the game loop that
gets called for each frame.

BrowserGame/Arduinoid/js/arduinoid.js
function gameLoop() {

switch (Game.state) {
case GameStates.PAUSED:
if (Game.controller.buttonPressed) {

Game.state = GameStates.RUNNING;
}
break;

case GameStates.RUNNING:
movePaddle();
moveBall();
checkCollisions();
updateStatistics();
break;

case GameStates.WON:
handleMessageState("winner");
break;

case GameStates.LOST:
handleMessageState("game_over");
break;

default:
break;

}
}

report erratum • discuss

Creating the Game • 119

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

function handleMessageState(message) {
$("#" + message).show();
if (Game.controller.buttonPressed) {

$("#" + message).hide();
initGame();

}
}

The gameLoop function is surprisingly simple, because it only checks the game’s
current state and then delegates its work accordingly. If the game is paused
currently, it checks whether the player has pressed the game controller’s
button. If yes, it changes the game’s state to GameStates.RUNNING.

If the game is running already, gameLoop moves all game objects, checks for
potential collisions, and updates the game’s statistics. If the game was won
or lost, it calls handleMessageState to display a corresponding message.

handleMessageState displays a message by manipulating an HTML element’s
content. It also checks whether the game controller’s button was pressed. If
yes, it hides the message and initializes the game so the player can start a
new round. After a player has won or lost a game, he or she can start a new
game by pressing the button on the game controller.

Moving the objects on the screen is the most important part in many video
games. Thanks to jQuery, it’s not that difficult.

BrowserGame/Arduinoid/js/arduinoid.js
function moveBall() {Line 1

var ball_pos = $("#ball").position();-

var ball_x = ball_pos.left;-

var ball_y = ball_pos.top;-

var next_x_pos = ball_x + Game.ball.vx;5

var next_y_pos = ball_y + Game.ball.vy;-

-

if (next_x_pos <= 0) {-

Game.ball.vx *= -1;-

next_x_pos = 1;10

} else if (next_x_pos >= Game.playfield.width - Game.ball.diameter) {-

Game.ball.vx *= -1;-

next_x_pos = Game.playfield.width - Game.ball.diameter - 1;-

}-

15

var paddle_y = $("#paddle").position().top;-

if (next_y_pos <= 0) {-

Game.ball.vy *= -1;-

next_y_pos = 1;-

} else if (next_y_pos + Game.ball.diameter >= paddle_y) {20

var paddle_x = $("#paddle").position().left;-

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 120

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

if (next_x_pos >= paddle_x &&-

next_x_pos <= paddle_x + Game.paddle.width)-

{-

Game.ball.vy *= -1;25

next_y_pos = paddle_y - Game.ball.diameter;-

}-

}-

-

$("#ball").css({ "left" : next_x_pos, "top" : next_y_pos });30

}-

-

function movePaddle() {-

if (Game.controller.moveLeft) {-

var paddle_x = $("#paddle").position().left;35

if (paddle_x - Game.paddle.speed >= 0) {-

$("#paddle").css("left", paddle_x - Game.paddle.speed);-

} else {-

$("#paddle").css("left", 0);-

}40

}-

-

if (Game.controller.moveRight) {-

var paddle_x = $("#paddle").position().left;-

var next_pos = paddle_x + Game.paddle.width + Game.paddle.speed;45

if (next_pos < Game.playfield.width) {-

$("#paddle").css("left", paddle_x + Game.paddle.speed);-

}-

}-

}50

The most useful jQuery method when moving objects is position. It returns an
object that contains an HTML element’s current left and top attributes. In CSS,
these attributes specify an object’s x- and y-coordinates on the screen. In
lines 2 to 4 of the moveBall function, we use the position function to determine
the ball’s current screen coordinates. In the following two lines, we calculate
the ball’s new position by adding the current velocities for both directions.

After that, we check whether the ball’s new position would be out of the screen.
If yes, we clip the coordinates to the screen’s boundaries. In lines 8 to 14, we
make sure that the ball’s x-coordinate is greater than zero and less than the
playfield’s width. If the ball hits the left or right boundary of the playfield, we
multiply vx by -1, so it changes its direction.

Nearly the same happens in lines 16 to 28 for the ball’s y-coordinate. When-
ever the ball hits the top of the playfield, we multiply vy by -1. The playfield
has no bottom boundary, but we have to check whether the ball would hit
the paddle. If it does, we invert vy, too.

report erratum • discuss

Creating the Game • 121

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Eventually, we set the ball’s position to the new values in line 30.

Moving the paddle is similar, but it depends on the current state of the game
controller. If the player wants the paddle to move left, we subtract the paddle’s
current speed from the paddle’s x-coordinate. We also make sure that the
paddle doesn’t leave the screen. Movement to the right works nearly the same.
We only have to add the paddle’s current speed.

A difficult problem in video games is collision detection. You’ve probably
played a game or two and yelled “No, that thing didn’t hit me!” or “I’m sure I
killed that alien first!” In most cases inexact collision detection is the cause
of your frustration.

Even for our simple game, exact collision detections aren’t easy. The blocks
have rounded corners, so checking whether the ball overlaps one of the corners
or has actually touched the block isn’t trivial. For a good game experience
this isn’t necessary, so I’ve simplified the collision detection.

BrowserGame/Arduinoid/js/arduinoid.js
function checkCollisions() {Line 1

if (ballDropped()) {-

Game.lives = Game.lives - 1;-

if (Game.lives == 0) {-

Game.state = GameStates.LOST;5

} else {-

Game.state = GameStates.PAUSED;-

resetMovingObjects();-

}-

}10

if (!checkBlockCollision()) {-

Game.state = GameStates.WON;-

}-

}-

15

function ballDropped() {-

var ball_y = $("#ball").position().top;-

var paddle_y = $("#paddle").position().top;-

return ball_y + Game.ball.diameter > paddle_y + Game.paddle.height;-

}20

-

function inXRange(ball_left, block_left, block_width) {-

return (ball_left + Game.ball.diameter >= block_left) &&-

(ball_left <= block_left + block_width);-

}25

-

function inYRange(ball_top, block_top, block_height) {-

return (ball_top + Game.ball.diameter >= block_top) &&-

(ball_top <= block_top + block_height);-

}30

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 122

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

function checkBlockCollision() {-

var block_width = $(".block").first().width();-

var block_height = $(".block").first().height();-

var ball_left = $("#ball").position().left;35

var ball_top = $("#ball").position().top;-

var blocks_left = false;-

$(".block").each(function() {-

if ($(this).css("visibility") == "visible") {-

blocks_left = true;40

var block_top = $(this).position().top;-

var block_left = $(this).position().left;-

var in_x = inXRange(ball_left, block_left, block_width);-

var in_y = inYRange(ball_top, block_top, block_height);-

if (in_x && in_y) {45

Game.score += 10;-

$(this).css("visibility", "hidden");-

if (in_x) {-

Game.ball.vy *= -1;-

}50

if (in_y) {-

Game.ball.vx *= -1;-

}-

}-

}55

});-

return blocks_left;-

}-

The checkCollisions function first checks whether the player has dropped the
ball. In this case we decrease the number of lives. Then we check whether
the player has lost all of his lives. If yes, we set the game’s state to GameS-
tates.LOST. Otherwise, we pause the game and set the ball and paddle positions
to their defaults.

ballDropped compares the y-coordinate of the ball’s bottom with the y-coordinate
of the paddle’s bottom. If the ball’s bottom is greater, the ball has been
dropped.

Next we define two helper functions named inXRange and inYRange. They check
whether the ball overlaps with a block horizontally or vertically. We use these
functions in checkBlockCollision to see whether any visible block has been hit by
the ball.

Therefore, we need a few more jQuery methods. In line 33, we select all ele-
ments belonging to the class block using $(".block"). If you pass a selector to the
$ function that selects more than one element, the function automatically
returns a list of objects. We select the first object using the first method; then

report erratum • discuss

Creating the Game • 123

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

we read its width. In the next line we do the same to determine the block’s
height. Because all blocks have the same width and height, we have to do
this only once. After that we determine the ball’s current position.

In line 38, we use the each method to loop over all blocks in the HTML docu-
ment. each expects a callback function that gets called for each block. Note
that the function doesn’t get any arguments, because you can find the current
block in $(this).

In the loop function, we check whether the current block is visible, because
if it’s not, we don’t have to check it for a collision. We use our helper functions
inXRange and inYRange to see whether the current block has been hit by the ball.
In that case we make it invisible, and depending on the way the ball has hit
the block, we invert the ball’s velocities.

Finally, we have to make sure that the gameLoop function is called every 30
milliseconds to make the game run smoothly:

BrowserGame/Arduinoid/js/arduinoid.js
$(function() {

initGame();
setInterval(gameLoop, 30);

});

We use yet another variant of jQuery’s $ function. This time we pass it an
anonymous function that gets called as soon as the HTML page has been
loaded completely. In this function, we initialize the game and make sure the
gameLoop function is called every 30 milliseconds.

The game is complete, so play a few rounds and relax! You deserve it!

What If It Doesn’t Work?
If you cannot make this chapter’s code run, you should download the code
from the book’s website and try to run it. Make sure you’re using the right
serial port in the arduinoid.js and game_controller.js files in the
code/BrowserGame/Arduinoid/js/ directory.

Exercises
• Create your own computer mouse using the ADXL335 accelerometer. It

should work in free air, and it should emit the current acceleration around
the x- and y-axes. It should also have a left button and a right button.
Write a Chrome app (or perhaps code in a programming language of your
choice?) to control a mouse pointer on the screen.

Chapter 7. Writing a Game for the Motion-Sensing Game Controller • 124

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/BrowserGame/Arduinoid/js/arduinoid.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Creating Games and Game Controllers with the Arduino

If you’re thinking about a proper case for the game controller you’ve built in the pre-
ceding chapter, you might have a look at the Lego/Arduino controller.a Its innards
differ from the controller we’ve built, but its case is really cool.

You can use the Arduino to build more than your own cool game controllers. You can
also use it to build some cool games. With the right extension shields, you can even
turn an Arduino into a powerful gaming console. The most powerful extension shields
are probably the Gameduinob and its successor, Gameduino 2.c

If you don’t need color graphics and stereo sound, you can find even cheaper solutions,
such as the Video Game Shieldd or the Hackvision.e They generate a monochrome
video signal, and you can learn how to do it yourself in Chapter 8, Generating Video
Signals with an Arduino, on page 127.

While looking for a solution that doesn’t need an external monitor, someone built a
Super Mario Bros. clone with minimal hardware requirements.f It’s a perfect example
of the unbelievable creativity that the Arduino sets free.

a. http://strangemeadowlarkprojects.blogspot.de/2014/05/a-legoarduino-game-controller.html
b. http://excamera.com/sphinx/gameduino/
c. http://excamera.com/sphinx/gameduino2/index.html#gameduino2
d. http://www.wayneandlayne.com/projects/video-game-shield/
e. http://nootropicdesign.com/store/index.php?main_page=index&cPath=2
f. http://blog.makezine.com/archive/2010/03/super-mario-brothers-with-an-arduin.html

report erratum • discuss

Exercises • 125

http://strangemeadowlarkprojects.blogspot.de/2014/05/a-legoarduino-game-controller.html
http://excamera.com/sphinx/gameduino/
http://excamera.com/sphinx/gameduino2/index.html#gameduino2
http://www.wayneandlayne.com/projects/video-game-shield/
http://nootropicdesign.com/store/index.php?main_page=index&cPath=2
http://blog.makezine.com/archive/2010/03/super-mario-brothers-with-an-arduin.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 8

Generating Video Signals with an Arduino
So far we’ve used several different technologies to communicate with the
outside world. We’ve used LEDs to represent our binary die’s results, for
example, and we’ve used the serial port to send more elaborate messages.
We’ve also turned data received on the serial port into shiny applications
running in our browser.

For many projects this way of displaying information is sufficient, but in some
cases you want a real display. You could use an LCD display, for example,
and you’ll find multicolor TFT touch displays you can attach to the Arduino,
too. Another option is surprisingly cheap: you can connect the Arduino to
your TV set and display information right on the screen.

In this chapter, not only will you learn how analog TV works in principle,
you’ll also learn how to generate a stable monochrome video signal using your
Arduino. At the end of the chapter, you’ll have a graphical thermometer that
will run on the TV set in your living room.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. An RCA cable
2. A 470Ω resistor
3. A 1kΩ resistor
4. Some wires
5. A TMP36 temperature sensor from Analog Devices
6. An Arduino board, such as the Uno, Duemilanove, or Diecimila
7. A USB cable to connect the Arduino to your computer

How Analog Video Works
Before you create your own video signals, it helps to understand how analog
TV systems work in general. If you’re impatient, you can skip the theory and
jump straight to Connecting the Arduino to Your TV Set, on page 131.

First of all, you should note that analog video is completely different from
digital video in most regards. In this chapter, we’ll only talk about analog
video signals that you can feed to your TV set’s composite input.

You might remember the good old days when TV sets were huge, heavy boxes
with ridiculously tiny screens. These boxes had to be so big because they
contained a small electron cannon that produced images by firing electrons
to the screen. The cannon drew an image line by line—that is, it started at
the top-left corner of the screen and drew the first line of the image. At the
end of the line, it moved back to the left side and drew the second line. This
technique is called raster scan. Figure 23, How raster scan works, on page
129 shows how it worked.

After the last line was drawn, the electron beam moved back to the top and
drew the next image. Depending on the TV standard, this process happened

Chapter 8. Generating Video Signals with an Arduino • 128

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 23—How raster scan works
(Image created by Ian Harvey)

50 to 60 times per second, and it was fast enough to create the illusion of
motion. (Actually, most TV sets needed two passes to draw a single image
using a mechanism called interlacing, but for our purposes that’s irrelevant.)

Moving the electron beam across the screen isn’t sufficient. You have to
somehow encode the information you’d like to draw. Therefore, you have to
change the electron beam’s intensity while it traverses the screen. Due to a
chemical reaction, the TV screen will glow in different colors when the electron
cannon hits it with different intensities. For a monochrome signal, you need
to generate the voltages explained in the following table.

1.0V0.6V0.3V0.0VVoltage:

WhiteGrayBlackSYNCColor:

A voltage of 0V represents the SYNC signal. It tells the TV set that a new line
of the image begins. All the other voltages represent different colors. To draw
a white dot, you have to set the voltage to 1V.

All we have to do is create a couple of different voltage levels. That doesn’t
sound too difficult, but unfortunately, the Arduino has only analog input
pins. It cannot emit analog output signals. At least not directly, but in the
next section you’ll learn how to do it.

report erratum • discuss

How Analog Video Works • 129

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Building a Digital-to-Analog Converter (DAC)
The Arduino doesn’t natively support analog output signals, so we need to
find a way around this limitation. The solution is a digital-to-analog converter
(DAC).1 As the name suggests, such a circuit turns a digital input into an
analog output. You can find DACs in a lot of consumer devices—for example,
in your MP3 player. It turns your digitally encoded music into an analog
sound wave.

One of the most important characteristics of a DAC is its resolution. In our
case we need to generate four different voltage levels to create a video signal.
To encode four voltage levels, we need two bits—that is, our DAC has a 2-bit
resolution. The following table shows how we could map the four binary input
values to their voltage levels.

11100100Binary input:

1.0V0.6V0.3V0.0VOutput voltage:

We can use two of the Arduino’s digital pins to control the DAC’s input value,
but we still have to find a way to generate different voltages depending on the
pins’ values.

There are several ways to achieve this, but one of the easiest is by using a
binary-weighted DAC. It has the following characteristics:

• You need a resistor for every input bit.
• All resistors have to be in parallel.
• Resistor value for bit #0 is R. For bit #1 it’s 2R, for bit #3 it’s 4R, and so

on.

Let’s say we use the Arduino’s digital pins D7 and D9 to control the DAC’s
input value. In the following figure, you can see our DAC’s circuit. You have
to add the 470Ω and 1kΩ resistors yourself, but you get the 75Ω resistor for
free, because it’s part of your TV set’s input connector.

In principle, the binary-weighted DAC is a voltage divider2—that is, it turns
an input voltage into a smaller voltage. The output voltage depends on the

1. http://en.wikipedia.org/wiki/Digital-to-analog_converter
2. http://en.wikipedia.org/wiki/Voltage_divider

Chapter 8. Generating Video Signals with an Arduino • 130

report erratum • discuss

http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/Voltage_divider
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

resistor values—75Ω, 470Ω, and 1kΩ, in our case. If you set both input sig-
nals to 0V, the output voltage will be 0V, too. That’s how we can create the
SYNC signal.

Calculating the output voltage for the remaining three combinations of input
values isn’t rocket science, but the theory and formulas of voltage division
are beyond the scope of this book. Just to give you a feeling, the following
figure shows how to calculate the output voltage when you set D7 to 0V and
D9 to 5V.

The following table shows the corresponding output voltages for all possible
combinations of pin values.

ColorOutput VoltagePin D9Pin D7

SYNC0.0V0V0V

Black0.3V5V0V

Gray0.65V0V5V

White0.95V5V5V

Now you should see why we’ve used a 470Ω and a 1kΩ resistor. The value
1000 is roughly 470 times 2, so the resistor values follow the rules of a
binary-weighted DAC. Also, these two resistors (combined with the TV set’s
75Ω resistor) produce the output voltages we need. Note that the output
voltages don’t exactly match the specification, but in practice the small differ-
ences are negligible.

Connecting the Arduino to Your TV Set
Even with a digital-to-analog converter in place, we still have a problem: the
Arduino doesn’t have an RCA jack—that is, you cannot plug an RCA cable
into an Arduino. We could attach an RCA jack to a breadboard and connect
it to the Arduino, but there’s an easier solution. We’ll modify an RCA cable
and connect it directly to the Arduino.

First, you have to cut off one of the cable’s connectors using a wire cutter.
(See Learning How to Use a Wire Cutter, on page 243, to learn more about wire
cutters.) Then remove about three centimeters of the cable’s outer insulation.

report erratum • discuss

Connecting the Arduino to Your TV Set • 131

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Be careful, because the insulation isn’t very thick. Use the wire cutter to cut
it slightly and then remove it by pushing it slowly toward the cable’s end. The
cable should look like the following image.

As you can see, there’s a mesh of wires below the outer insulation. Bring back
the mesh into wire shape by rubbing it between your thumb and forefinger,
so you can solder it to a solid-core wire later. The result should look like the
following image.

The cable usually also contains an inner insulation made of plastic. Use the
wire cutter again to remove the inner insulation. In my experience, it’s best
to put the insulation between the wire cutter’s blades and then turn the cable
slowly and carefully, increasing the pressure while turning the cable. Be very
careful that you don’t accidentally cut the signal wire! After you’ve cut through
the whole insulation, you can easily remove it. You should now see the cable’s
signal wire, and your cable should look like the following image.

Finally, we have to connect the two resistors to the RCA cable’s signal wire,
and it’s not sufficient to simply knot them together. You have to solder them.
While you’re at it, connect the RCA cable’s ground wire to a piece of solid-core
wire, so you can easily attach it to the Arduino. The following image shows
what it should look like.

Chapter 8. Generating Video Signals with an Arduino • 132

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

That’s it! You’ve turned an RCA cable into a binary-weighted DAC that you
can can connect to your Arduino to generate your own video signal. Plug the
470Ω resistor into port D7, the 1kΩ resistor into D9, and the ground wire
into one of the Arduino’s GND ports. You can see the final circuit in the fol-
lowing image.

Using the TVout Library
Okay, the hardware’s done, but how do we bring it to life? We could try to
write our own library to emit video signals, but I have to admit that I didn’t
tell you the whole truth. To generate a clean and stable video signal, you not
only have to output different voltages, but you also have to make sure that
you emit your signals according to a very accurate schedule. The timing has
to be so accurate that you have to implement it in assembly language!

report erratum • discuss

Using the TVout Library • 133

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Don’t worry! Of course there’s a library for that. The TVout library3 not only
generates crystal-clear video signals, but also comes with a lot of utility
functions for drawing geometric shapes. On top of that, it supports different
fonts in several sizes.

Note that the TVout library doesn’t support every Arduino board. For example,
it won’t work on the Arduino Leonardo or the Arduino Due. Check the TVout’s
website for a list of compatible hardware.

Download TVout,4 unzip it, and copy the contents of the zip archive to the
libraries folder of the Arduino IDE. Then restart your IDE.

The library comes with a few examples. The most important ones are
DemoNTSC and DemoPAL. In principle, it’s only one example that demon-
strates all of the library’s features, but it comes in two flavors: NTSC and PAL.
This is necessary because there are different standards for analog TV. NTSC
and PAL are two very popular ones. They don’t differ much, and modern TV
sets are usually capable of working with both. Still, your TV set might be
pickier about its input. If you’re living in the United States, you’ll probably
need the NTSC demo; in Europe, PAL is the way to go.

Compile and upload the sketch to your Arduino; then
connect the Arduino to your TV set’s composite input
using the RCA cable. You should see an impressive
demo showing TVout’s capabilities. At the end it even
shows the inevitable rotating 3D cube.

The library’s standard example shows nearly all of
TVout’s functions in action, so it’s a good idea to have
a look at the code. Still, the best way to learn how to use the library is to write
your own code. In the next section, you’ll create a graphical thermometer that
displays the current temperature on your TV screen.

Building a TV Thermometer
To build our TV thermometer, we’ll use the TMP36 sensor again, so we’ll
combine the circuit we created in Increasing Precision Using a Temperature
Sensor, on page 86, with the circuit we created for generating the video signal.
You can see the result in Figure 24, Circuit of the TV thermometer, on page
135.

3. https://code.google.com/p/arduino-tvout/
4. https://arduino-tvout.googlecode.com/files/TVoutBeta1.zip

Chapter 8. Generating Video Signals with an Arduino • 134

report erratum • discuss

https://code.google.com/p/arduino-tvout/
https://arduino-tvout.googlecode.com/files/TVoutBeta1.zip
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 24—Circuit of the TV thermometer

Don’t get confused by what the circuit for the video signal looks like in the
circuit diagram. That’s how you would build the circuit on a breadboard. Of
course, you can still connect the modified RCA cable directly to the Arduino.
Then connect the circuit for the TMP36 sensor.

Before we dive into the project’s code, have a look at what we’re trying to
build.

On the left side of the screen, you see
a graphical representation of a typical
thermometer. It has a scale ranging
from 5.5 to 40 degrees Celsius. The
thermometer isn’t a static image. The
bar in the middle will grow or shrink
depending on the current tempera-
ture.

On the right side of the screen, we
display the current temperature as
text. All in all, we have to output some
text, and we have to draw some graphics. It’s a perfect opportunity to meet
TVout’s most important functions, so let’s see how it works.

report erratum • discuss

Building a TV Thermometer • 135

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Video/TvThermometer/TvThermometer.ino
#include <TVout.h>
#include <fontALL.h>
#include "thermometer.h"

const float SUPPLY_VOLTAGE = 5.0;
const float MIN_TEMP = 5.5;
const float MAX_TEMP = 40.0;
const unsigned int SCREEN_WIDTH = 120;
const unsigned int SCREEN_HEIGHT = 96;
const unsigned int TEMP_SENSOR_PIN = A0;
const unsigned int SCALE_X_MIN = 8;
const unsigned int SCALE_Y_MIN = 6;
const unsigned int SCALE_Y_MAX = 75;
const unsigned int SCALE_WIDTH = 3;
const unsigned int SCALE_HEIGHT = SCALE_Y_MAX - SCALE_Y_MIN;

float current_temperature = 0.0;
unsigned long last_measurement = millis();
TVout TV;

At the beginning of our program, we include a few header files. TVout.h declares
TVout’s main class and all of its methods. fontALL.h contains the definition of
all fonts that TVout offers. If you don’t want to output any text, you don’t
have to include it. The thermometer.h file makes the graphical representation of
our thermometer available to our program. I’ll explain its content later.

After we’ve included all necessary header files, we define a few constants and
variables:

• SUPPLY_VOLTAGE defines the Arduino’s supply voltage, and TEMP_SENSOR_PIN
contains the number of the pin to which you’ve connected the TMP36
sensor.

• MIN_TEMP and MAX_TEMP define the minimum and maximum temperatures
(in degrees Celsius) that the TV thermometer can display.

• SCREEN_WIDTH and SCREEN_HEIGHT define the screen’s width and height. Note
that the Arduino isn’t capable of displaying really big screen resolutions.
A width of 120 to 132 pixels and a height of 96 pixels is a reasonable
compromise.

• SCALE_X_MIN defines the minimum X position of the thermometer’s scale.
SCALE_Y_MIN and SCALE_Y_MAX define the minimum and maximum Y positions
of the thermometer’s scale. We’ll need these constants to draw a rectangle
representing the current temperature later.

Chapter 8. Generating Video Signals with an Arduino • 136

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Video/TvThermometer/TvThermometer.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• SCALE_WIDTH and SCALE_HEIGHT define the width and height of the thermome-
ter’s scale.

• The variable current_temperature holds the last temperature we measured.
last_measurement contains the time stamp in milliseconds when we last
measured the current temperature. We need this because we don’t want
to measure the temperature permanently, but only every few seconds.

• TV is an instance of the TVout class, and we’ll use it for accessing the TV
screen using the Arduino.

Next we define the setup function:

Video/TvThermometer/TvThermometer.ino
void setup() {

TV.begin(PAL, SCREEN_WIDTH, SCREEN_HEIGHT);
TV.bitmap(0, 1, thermometer);
TV.select_font(font4x6);
TV.set_cursor(20, 4);
TV.print("40");
TV.set_cursor(20, 24);
TV.print("30");
TV.set_cursor(20, 44);
TV.print("20");
TV.set_cursor(20, 64);
TV.print("10");

}

We call the begin method of the TV object. We set the analog TV standard to
PAL, and we set the screen’s width and height. If your TV set prefers NTSC,
you have to replace the first argument with NTSC. After that, we invoke the
bitmap method to draw the thermometer image to the screen. Its X position is
0, and its Y position is 1.

The thermometer’s image doesn’t contain numbers next to its scale, so we
add the numbers in our program. Therefore, we have to select the font we’re
going to use by using the select_font method. TVout’s font capabilities are quite
impressive. It comes with three fixed-width fonts (4x6, 6x8, and 8x8 pixels)
that are sufficient for most purposes. It also supports variable-width fonts,
and it even allows you to define your own. Here we use a font that’s 4 pixels
wide and 6 pixels high. The set_cursor method moves the cursor to a certain
screen position, and print prints text to the current cursor position.

The loop function implements the rest of our thermometer’s business logic.

report erratum • discuss

Building a TV Thermometer • 137

http://media.pragprog.com/titles/msard2/code/Video/TvThermometer/TvThermometer.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Video/TvThermometer/TvThermometer.ino
void loop() {Line 1

unsigned long current_millis = millis();-

if (abs(current_millis - last_measurement) >= 1000) {-

current_temperature = get_temperature();-

last_measurement = current_millis;5

int y_pos = mapfloat(-

current_temperature, MIN_TEMP, MAX_TEMP, SCALE_Y_MAX, SCALE_Y_MIN);-

TV.draw_rect(-

SCALE_X_MIN, SCALE_Y_MIN, SCALE_WIDTH, SCALE_HEIGHT, BLACK, BLACK);-

TV.draw_rect(10

SCALE_X_MIN, y_pos, SCALE_WIDTH, SCALE_Y_MAX - y_pos, WHITE, WHITE);-

TV.select_font(font6x8);-

TV.set_cursor(53, 1);-

TV.print("Current");-

TV.set_cursor(40, 11);15

TV.print("Temperature:");-

TV.select_font(font8x8);-

TV.set_cursor(50, 25);-

TV.print(current_temperature, 1);-

TV.print(" C");20

TV.draw_circle(88, 27, 1, WHITE);-

}-

}-

-

const float mapfloat(25

float x, float in_min, float in_max, float out_min, float out_max)-

{-

return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;-

}-

30

const float get_temperature() {-

const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);-

const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;-

return (voltage * 1000 - 500) / 10;-

}35

We make sure that we measure the current temperature only once per second.
Whenever we determine the current temperature, we calculate the new upper
Y position of the thermometer’s scale in line 6. The map_float function maps
the current temperature to a value on our thermometer’s scale.

Then we use the draw_rect method (which draws a rectangle on the screen)
twice. The first call erases the thermometer’s scale completely. This is neces-
sary because the temperature can rise or fall. We could clear and redraw the
whole screen every time, but that would be overkill. The second call draws a
white rectangle on our scale that represents the current temperature.

Chapter 8. Generating Video Signals with an Arduino • 138

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Video/TvThermometer/TvThermometer.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Next, we output the current temperature as text. We use TVout’s select_font,
set_cursor, and print methods to output the text “Current Temperature” in a font
that is 6 pixels wide and 8 pixels high. After that, we output the current
temperature in degrees Celsius using the 8x8 font. The TVout library doesn’t
define a symbol for degrees Celsius, so we use the draw_circle method in line
21 to draw a small circle to simulate a degrees symbol.

We’re done! That’s all the code we need to make the TV thermometer work.
The only thing I haven’t explained in detail is how outputting the thermometer
image works. You’ll learn more about that in the next section.

Working with Graphics in TVout
In TvThermometer.ino we’ve included the thermometer.h file without explaining what
it contains. Here’s how it looks:

Video/TvThermometer/thermometer.h
#ifndef THERMOMETER_H
#define THERMOMETER_H
extern const unsigned char thermometer[];
#endif

Quite disappointing, isn’t it? The file declares only a single variable named
thermometer. This variable is an array of unsigned character values, and the
extern keyword tells the compiler that we only want to declare the variable.
That is, we can refer to it in our program, but we still have to define it to
allocate some memory.

We actually define the thermometer variable in thermometer.cpp (we’ve skipped a
few lines for brevity):

Video/TvThermometer/thermometer.cpp
#include <Arduino.h>Line 1

#include <avr/pgmspace.h>-

#include "thermometer.h"-

PROGMEM const unsigned char thermometer[] = {-

20, 94,5

B00000000, B11110000, B00000000,-

B00000001, B00001000, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,10

B00000010, B00000111, B10000000, // 40.0-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,15

B00000010, B00000100, B00000000,-

report erratum • discuss

Working with Graphics in TVout • 139

http://media.pragprog.com/titles/msard2/code/Video/TvThermometer/thermometer.h
http://media.pragprog.com/titles/msard2/code/Video/TvThermometer/thermometer.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,-

B00000010, B00000100, B00000000,20

// ...-

B00000010, B00000100, B00000000, // 5.5-

B00000111, B11111110, B00000000,-

B00001111, B11111111, B00000000,-

B00011111, B11111111, B10000000,25

B00111111, B11111111, B11000000,-

B01111111, B11111111, B11100000,-

B01111111, B11111111, B11100000,-

B11111111, B11111111, B11110000,-

B11111111, B11111111, B11110000,30

B11111111, B11111111, B11110000,-

B11111111, B11111111, B11110000,-

B11111111, B11111111, B11110000,-

B11111111, B11111111, B11110000,-

B01111111, B11111111, B11100000,35

B01111111, B11111111, B11100000,-

B00111111, B11111111, B11000000,-

B00011111, B11111111, B10000000,-

B00001111, B11111111, B00000000,-

B00000111, B11111110, B00000000,40

B00000001, B11111000, B00000000,-

B00000001, B11111000, B00000000,-

};-

This file looks weird at first, but it’s really simple. First, we include Arduino.h
because we’ll need to declare binary constants later. After that, we include
avr/pgmspace.h because we want to store our image data in the Arduino’s flash
RAM. Eventually, we include thermometer.h because we need the declaration of
our thermometer image data.

In line 4, we eventually define the thermometer variable we declared in thermome-
ter.h. The definition differs slightly from the declaration because it contains
the PROGMEM directive.5 This directive tells the compiler to copy the data stored
in the thermometer variable to the Arduino’s flash memory. Usually, when you
define a variable in an Arduino program, it occupies memory in the SRAM.
Most Arduinos don’t have a lot of SRAM (the Arduino Uno only has 2 KB), so
it’s a valuable resource and you shouldn’t waste it. As a rule of thumb, you
should store all constant data in the Arduino’s flash RAM. Use SRAM only
for information that might change during program execution.

5. http://arduino.cc/en/Reference/PROGMEM

Chapter 8. Generating Video Signals with an Arduino • 140

report erratum • discuss

http://arduino.cc/en/Reference/PROGMEM
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Image data like our thermometer usually doesn’t change, so you should always
store it in flash RAM using the PROGMEM directive. TVout expects image data
in raw format. The first two bytes contain the width and height of an image.
The data that follows contains the image data line by line. In thermometer.cpp,
each line of image data contains three bytes, because the image is 20 pixels
wide, and 20 pixels occupy three bytes. Consequently, the file contains 94
lines each representing a single line of the thermometer image. Because we’ve
used binary literals to encode the image data, you can actually see how the
image looks when reading the source code. A 1 represents a white pixel, and
a 0 represents a black pixel.

Drawing Images for Your Arduino Programs
You can draw simple images directly in the source code by editing binary
numbers. As soon as your images get more complex, you need some tool
support. For graphics that are still fairly simple but that are too complex to
edit the binary numbers in the source code, you can use any drawing program,
of course, but most modern tools are way too complicated for this job.

I’ve created the thermometer image with a fairly simple online tool named
Piskel.6 It’s open source, it’s easy to use, and it feels just right for creating
Arduino graphics. You can see it in action in Figure 25, You can find good
online editors for pixel graphics, on page 142.

Applications like Piskel really help to create images for your Arduino programs,
but they usually store these images in .gif or .png files. In the next section,
you’ll learn how to convert these files into source code.

Turning Pixels into C++ Code
After you’ve finished your pixel art, you still have to convert it into a C/C++
file. You could do it manually, but that wouldn’t be very pragmatic, would it?
It’d be much better to write a small program that does the conversion auto-
matically.

You could write such a program in any modern programming language; we’ll
use Ruby here. Processing graphics in Ruby is easy thanks to the rmagick
library. This library is a binding to ImageMagick,7 a powerful tool for trans-
forming images. Before you can install rmagick, you have to install
ImageMagick.

6. http://www.piskelapp.com/
7. http://www.imagemagick.org/

report erratum • discuss

Working with Graphics in TVout • 141

http://www.piskelapp.com/
http://www.imagemagick.org/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 25—You can find good online editors for pixel graphics.

When ImageMagick is available on your system, you can install the rmagick
library using the following command:

maik> gem install rmagick

Now you can use rmagick in your Ruby programs. We’ll use it to convert a
graphics file into a C++ file:

Video/img2cpp.rb
require 'RMagick'Line 1

include Magick-

-

image = Image::read(ARGV[0]).first-

5

puts '#include "thermometer.h"'-

puts 'PROGMEM const unsigned char thermometer[] = {'-

puts " #{image.columns}, #{image.rows},"-

-

(0..image.rows).each do |y|10

print ' B'-

(0..image.columns).each do |x|-

pixel = image.pixel_color(x, y)-

print pixel.red == 0 ? '0' : '1'-

print ', B' if (x + 1) % 8 == 015

Chapter 8. Generating Video Signals with an Arduino • 142

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Video/img2cpp.rb
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

end-

print '0' * (8 - (image.columns % 8))-

puts ','-

end-

20

puts '};'-

First, the program loads the rmagick library and imports the RMagick
namespace. We do this to save some typing, because now we don’t have to
fully qualify all classes that live in the RMagick namespace. In line 4, we read
an image whose name we have to pass as a command-line argument. The
image file’s format doesn’t matter, because ImageMagick understands nearly
all image file formats. The image variable contains a representation of the
image that doesn’t depend on the original file format any longer.

Next, we output the first three lines of the C++ file we’d like to generate. These
lines are mostly static. Only the third line contains some variable parts—that
is, the image’s width and the height.

Then we process the image’s pixels using two nested loops. The outer loop
iterates through each row of the image, and the inner loop through each col-
umn. In line 13 we read the current pixel, and in the next line we use a cheap
trick to determine whether the pixel is black or white. We know that our
images consist only of black and white pixels, so it’s sufficient to check only
one color component. If the red component is 0, the pixel has to be black. If
it’s 1, the pixel has to be white. We transform every pixel into a bit value, and
if the number of pixels in an image row isn’t divisible by 8 without a remainder,
we fill the remaining bits with zeros.

You can run the program like this:

maik> ruby img2cpp.rb thermometer.png > thermometer.cpp

This call turns the thermometer.png file into a C++ file you can add to your
Arduino project without any further modifications. That’s how software
developers approach boring and error-prone tasks.

In the next chapter, you’ll learn how to connect a Wii Nunchuk to your
Arduino, and we’ll use the TVout library to turn the Arduino into a video game
console.

What If It Doesn’t Work?
Even if this chapter’s hardware is simple, a few things can still go wrong. If
you don’t see a video signal at all on your TV set, make sure you’ve selected

report erratum • discuss

What If It Doesn’t Work? • 143

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

the right input source. Usually its name is AV or Composite. When in doubt,
try all of them.

Then check whether you’ve swapped the resistors. Connect the 470Ω resistor
to pin D7 and the 1kΩ resistor to D9. Also, make sure the resistors have the
right values.

If you see a distorted video signal, make sure you haven’t accidentally used
NTSC instead of PAL or vice versa. Also, check all solder joints on the modified
RCA cable. When in doubt, add more solder.

Exercises
• Use the TVout library to visualize some other sensor’s data. You can try

to build the parking-distance control from Chapter 5, Sensing the World
Around Us, on page 77, using the TVout library.

• Modify the TV thermometer so that it switches between degrees Celsius
and degrees Fahrenheit every few seconds. Don’t just change the text;
change the graphics, too.

Chapter 8. Generating Video Signals with an Arduino • 144

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 9

Tinkering with the Wii Nunchuk
One of the most entertaining electronic activities is simply tinkering: taking
an existing product and turning it into something different or using it for an
unintended purpose. Sometimes you have to open the product and void its
warranty; other times you can safely make it part of your own project.

In this chapter, you’ll learn how to hijack a Nintendo Nunchuk controller. It’s
a perfect candidate for tinkering: it comes with a three-axis accelerometer,
an analog joystick, and two buttons, and it is very cheap (less than $20 at
the time of this writing). Even better: because of its good design and its easy-
to-access connectors, you can easily integrate it into your own projects.

You’ll use an ordinary Nunchuk controller and transfer the data it emits to
our computer using an Arduino. You’ll learn how to wire it to the Arduino,
how to write software that reads the controller’s current state, and how to
build your own video game console. You don’t even need a Nintendo Wii to
do all of this—you need only a Nunchuk controller (shown in Figure 26, A
Nintendo Nunchuk controller, on page 146).

What You Need
• An Arduino board, such as the Uno, Duemilanove, or Diecimila
• A USB cable to connect the Arduino to your computer
• A Nintendo Nunchuk controller
• Four wires
• The modified RCA cable you built in Chapter 8, Generating Video Signals

with an Arduino, on page 127

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 26—A Nintendo Nunchuk controller

Wiring a Wii Nunchuk
Wiring a Nunchuk to an Arduino really is a piece of cake. You don’t have to
open the Nunchuk or modify it in any way. You only have to put four wires
into its connector and then connect the wires to the Arduino:

GND

3.3V Data

Clock
It has six connectors, but only four of them are active:
GND, 3.3V, Data, and Clock. Here’s the pinout of a
Nunchuk plug:

Put a wire into each connector and then connect the
wires to the Arduino. Connect the data wire to analog pin 4 and the clock
wire to analog pin 5. The GND wire has to be connected to the Arduino’s
ground pin, and the 3.3V wire belongs to the Arduino’s 3.3V pin.

Chapter 9. Tinkering with the Wii Nunchuk • 146

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

That’s really all you have to do to connect a Nunchuk controller to an Arduino.
In the next section, you’ll see that the two wires connected to analog pins 4
and 5 are all we need to interface with the controller.

Talking to a Nunchuk
No official documentation shows how a Nunchuk works internally or how you
can use it in a non-Wii environment. But some smart hackers and makers
on the Internet invested a lot of time into reverse-engineering what’s happening
inside the controller.

All in all, it’s really simple, because the Nunchuk uses the Two-Wire Interface
(TWI), also known as I2C (Inter-Integrated Circuit) protocol.1 It enables devices
to communicate via a master/slave data bus using only two wires. You
transmit data on one wire (Data), while the other synchronizes the communi-
cation (Clock).

The Arduino IDE comes with a library named Wire that implements the I2C
protocol. It expects the data line to be connected to analog pin 4 and the clock
line to analog pin 5. We’ll use it shortly to communicate with the Nunchuk,
but before that, we’ll have a look at the commands the controller understands.2

To be honest, the Nunchuk understands only a single command: “Give me
all your data.” Whenever it receives this command, it returns 6 bytes that
have the following meanings:

7 6 5 4 3 2 1 0

Joystick x position

Joystick y position

X acceleration bits 9..2

Y acceleration bits 9..2

Z acceleration bits 9..2

Bit

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6 Z accel.
bits 1..0

Y accel.
bits 1..0

X accel.
bits 1..0

Z
status

C
status

1. http://en.wikipedia.org/wiki/I2c
2. At http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/, you can find a library

that allows you to use any pair of pins for I2C communication.

report erratum • discuss

Talking to a Nunchuk • 147

http://en.wikipedia.org/wiki/I2c
http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• Byte 1 contains the analog stick’s x-axis value, and in byte 2 you’ll find
the stick’s y-axis value. Both are 8-bit numbers and range from about 29
to 225.

• Acceleration values for the x-, y-, and z-axes are three 10-bit numbers.
Bytes 3, 4, and 5 contain their eight most significant bits. You can find
the missing two bits for each of them in byte 6.

• Byte 6 has to be interpreted bit-wise. Bit 0 (the least significant bit) con-
tains the status of the Z-button. It’s 0 if the button was pressed; otherwise,
it is 1. Bit 1 contains the C-button’s status.

The remaining six bits contain the missing least significant bits of the accel-
eration values. Bits 2 and 3 belong to the x-axis, bits 4 and 5 belong to Y,
and bits 6 and 7 belong to Z.

Now that you know how to interpret the data you get from the Nunchuk, you
can start to build a Nunchuk class to control it.

Improve People’s Lives with Tinkering

Because of its popularity, peripheral equipment for modern game consoles often is
unbelievably cheap. Also, it’s no longer limited to classic controllers; you can buy
things such as snowboard simulators or cameras. So, it comes as no surprise that
creative people have built many interesting projects using hardware that was origi-
nally built for playing games.

An impressive and useful tinkering project is the EyeWriter.a It uses the PlayStation
Eye (a camera for Sony’s PlayStation 3) to track the movement of human eyes.

A team of hackers built it to enable their paralyzed friend to draw graffiti using his
eyes. Because of a disease, this friend, an artist, is almost completely physically
paralyzed and can move only his eyes. With the EyeWriter, he can create amazing
artwork again.

It’s not an Arduino project, but it’s definitely worth a look.

a. http://www.eyewriter.org/

Building a Nunchuk Class
The interface of our Nunchuk class (and the main part of its implementation)
looks as follows:

Tinkering/NunchukDemo/nunchuk.h
#ifndef __NUNCHUK_H__Line 1

#define __NUNCHUK_H__-

#define NUNCHUK_BUFFER_SIZE 6-

Chapter 9. Tinkering with the Wii Nunchuk • 148

report erratum • discuss

http://www.eyewriter.org/
http://media.pragprog.com/titles/msard2/code/Tinkering/NunchukDemo/nunchuk.h
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

class Nunchuk {5

public:-

void initialize();-

bool update();-

-

int joystick_x() const { return _buffer[0]; }10

int joystick_y() const { return _buffer[1]; }-

-

int x_acceleration() const {-

return ((int)(_buffer[2]) << 2) | ((_buffer[5] >> 2) & 0x03);-

}15

-

int y_acceleration() const {-

return ((int)(_buffer[3]) << 2) | ((_buffer[5] >> 4) & 0x03);-

}-

20

int z_acceleration() const {-

return ((int)(_buffer[4]) << 2) | ((_buffer[5] >> 6) & 0x03);-

}-

bool z_button() const { return !(_buffer[5] & 0x01); }-

bool c_button() const { return !(_buffer[5] & 0x02); }25

-

private:-

void request_data();-

char decode_byte(const char);-

30

unsigned char _buffer[NUNCHUK_BUFFER_SIZE];-

};-

-

#endif-

This small C++ class is all you need to use a Nunchuk controller with your
Arduino. It starts with a double-include prevention mechanism: it checks
whether a preprocessor macro named __NUNCHUK_H__ has been defined already
using #ifndef. If it hasn’t been defined, we define it and continue with the
declaration of the Nunchuk class. Otherwise, the preprocessor skips the decla-
ration, so you can safely include this header file more than once in your
application.

In line 3, we create a constant for the size of the array we need to store the
data the Nunchuk returns. We define this array in line 31, and in this case,
we define the constant using the preprocessor instead of the const keyword,
because array constants must be known at compile time in C++.

Then the actual declaration of the Nunchuk class begins. To initiate the commu-
nication channel between the Arduino and the Nunchuk, you have to invoke

report erratum • discuss

Building a Nunchuk Class • 149

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

the initialize method once. Then you call update whenever you want the Nunchuk
to send new data. You’ll see the implementation of these two methods shortly.

We have public methods for getting all of the attributes the Nunchuk returns:
the x and y positions of the analog stick, the button states, and the accelera-
tion values of the x-, y-, and z-axes. All of these methods operate on the raw
data you can find in the buffer in line 31. Their implementation is mostly
trivial, and it requires only a single line of code. Only the assembly of the 10-
bit acceleration values needs some tricky bit operations (see Bit Operations,
on page 251).

At the end of the class declaration, you’ll find two private helper methods
named request_data and decode_byte. We need them to implement the initialize and
update methods:

Tinkering/NunchukDemo/nunchuk.cpp
#include <Arduino.h>Line 1

#include <Wire.h>-

#include "nunchuk.h"-

#define NUNCHUK_DEVICE_ID 0x52-

5

void Nunchuk::initialize() {-

Wire.begin();-

Wire.beginTransmission(NUNCHUK_DEVICE_ID);-

Wire.write((byte)0x40);-

Wire.write((byte)0x00);10

Wire.endTransmission();-

update();-

}-

-

bool Nunchuk::update() {15

delay(1);-

Wire.requestFrom(NUNCHUK_DEVICE_ID, NUNCHUK_BUFFER_SIZE);-

int byte_counter = 0;-

while (Wire.available() && byte_counter < NUNCHUK_BUFFER_SIZE)-

_buffer[byte_counter++] = decode_byte(Wire.read());20

request_data();-

return byte_counter == NUNCHUK_BUFFER_SIZE;-

}-

-

void Nunchuk::request_data() {25

Wire.beginTransmission(NUNCHUK_DEVICE_ID);-

Wire.write((byte)0x00);-

Wire.endTransmission();-

}-

30

char Nunchuk::decode_byte(const char b) {-

return (b ^ 0x17) + 0x17;-

}-

Chapter 9. Tinkering with the Wii Nunchuk • 150

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Tinkering/NunchukDemo/nunchuk.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

After including all of the libraries we need, we define the NUNCHUK_DEVICE_ID
constant. I2C is a master/slave protocol; in our case, the Arduino will be the
master, and the Nunchuk will be the slave. The Nunchuk registers itself at
the data bus using a certain ID (0x52), so we can address it when we need
something.

In initialize, we establish the connection between the Arduino and the Nunchuk
by sending a handshake. In line 7, we call Wire’s begin method, so the Arduino
joins the I2C bus as a master. (If you pass begin an ID, it joins the bus as a
slave having this ID.) Then we’ll begin a new transmission to the device
identified by NUNCHUCK_DEVICE_ID: our Nunchuk.

We send two bytes (0x40 and 0x00) to the Nunchuk, and then we end the
transmission. This is the whole handshake procedure, and now we can ask
the Nunchuk for its current status by calling update. In the following figure,
we see the message flow between an Arduino and a Nunchuk.

Arduino Nunchuk

6 data bytes

Handshake (0x40, 0x00)

Request new data (0x00)

6 data bytes } repeat

update first pauses for a millisecond to let things settle. Then we request six
bytes from the Nunchuk, calling Wire.requestFrom. This doesn’t actually return
the bytes, but we have to read them in a loop and fill our buffer. Wire.available
returns the number of bytes available on the data bus, and Wire.read returns
the current byte. We cannot use the bytes we get from the Nunchuk directly,
because the controller obfuscates them. “Decrypting” them is easy, as you
can see in decode_byte.

Finally, we call request_data to tell the Nunchuk to prepare new data. It transmits
a single zero byte to the Nunchuk, which means “prepare the next six bytes.”

Before we actually use our Nunchuk class in the next section, take a look at the
documentation of the Wire library. In the Arduino IDE’s menu, choose Help
> Reference and click the Libraries link.

report erratum • discuss

Building a Nunchuk Class • 151

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Scientific Applications Using Wii Equipment

Because of the Wii’s accuracy and low price, many scientists use the Wii for things
other than gaming. Some hydrologists use it for measuring evaporation from a body
of water.a Usually, you’d need equipment costing more than $500 to do that.

Some doctors at the University of Melbourne had a closer look at the Wii Balance
Board, because they were looking for a cheap device to help stroke victims recover.b

They published a scientific paper verifying that the board’s data is clinically compa-
rable to that of a lab-grade “force platform” for a fraction of the cost.

a. http://www.wired.com/wiredscience/2009/12/wiimote-science/
b. http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-

strokes.html

Using Our Nunchuk Class
Let’s use the Nunchuk class to see what data the controller actually returns:

Tinkering/NunchukDemo/NunchukDemo.ino
#include <Wire.h>
#include "nunchuk.h"

const unsigned int BAUD_RATE = 19200;
Nunchuk nunchuk;

void setup() {
Serial.begin(BAUD_RATE);
nunchuk.initialize();

}

void loop() {
if (nunchuk.update()) {

Serial.print(nunchuk.joystick_x());
Serial.print(" ");
Serial.print(nunchuk.joystick_y());
Serial.print(" ");
Serial.print(nunchuk.x_acceleration());
Serial.print(" ");
Serial.print(nunchuk.y_acceleration());
Serial.print(" ");
Serial.print(nunchuk.z_acceleration());
Serial.print(" ");
Serial.print(nunchuk.z_button());
Serial.print(" ");
Serial.println(nunchuk.c_button());

}
}

Chapter 9. Tinkering with the Wii Nunchuk • 152

report erratum • discuss

http://www.wired.com/wiredscience/2009/12/wiimote-science/
http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html
http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html
http://media.pragprog.com/titles/msard2/code/Tinkering/NunchukDemo/NunchukDemo.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

No big surprises here: we define a global Nunchuk object and initialize it in the
setup function. In loop, we call update to request the controller’s current status
and output all attributes to the serial port.

Compile and upload the program, and then open the serial monitor and play
around with the Nunchuk. Move the stick, move the controller, and press the
buttons, and you should see something like this:

46 109 428 394 651 1 1
49 132 414 380 656 1 0
46 161 415 390 651 1 0
46 184 429 377 648 1 0
53 199 404 337 654 1 0
53 201 406 359 643 1 0

You have successfully connected a Nunchuk controller to your Arduino. It
really isn’t rocket science, and in the next section you’ll learn how to use it
to control your own video games.

The next time you buy a new piece of hardware, try to imagine how to use it
in a different context. Often it’s easier than you think. Oh, and whenever you
create a class such as our Nunchuk class, consider turning your code into a
library and making it available on the Internet. (See Chapter 4, Building a
Morse Code Generator Library, on page 61, to learn how to create your own
libraries.)

Creating Your Own Video Game Console
Now that you know how to generate video output and how to control the Wii
Nunchuk, it seems natural to build your own little video game console. You
only have to combine the Nunchuk circuit and the circuit for generating the
video signal. See Figure 27, Circuit of our video game console, on page 154.

Note that you still don’t need a breadboard. Simply connect the Nunchuk to
the Arduino as shown on page 146 and connect the RCA cable as shown on
page 133. That’s all you have to do to create your own video game console.
Now let’s write some games for it.

Creating Your Own Video Game
TVout and our Nunchuk library are all we need to write entertaining games
for our video game console. In this section we’ll build Pragduino, a simple
game that demonstrates most of the skills you need to write more complex
games.

report erratum • discuss

Creating Your Own Video Game Console • 153

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 27—Circuit of our video game console

The player controls crosshairs using the
Nunchuk’s analog stick and has to shoot
circles using the Nunchuk’s Z button. The
circles appear at random positions and
stay there for 1.5 seconds. A status bar
at the top of the screen shows how much
time is left until the current circle disap-
pears. The game ends after ten rounds,
and the game’s goal is to hit as many cir-
cles as possible.

Chapter 9. Tinkering with the Wii Nunchuk • 154

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Before we dive into the game’s code, make sure you’ve installed the TVout
library as described in Using the TVout Library, on page 133. You also have to
make the code of your Nunchuk library available. We haven’t turned it into
a complete library in this chapter, but the book’s code archive contains an
enhanced version. Download the book’s code from the book’s website and
unzip it. Copy the code/Tinkering/Nunchuk directory to the libraries folder of your
Arduino IDE. Alternatively, you can create a folder named Nunchuk in your
IDE’s libraries folder and copy the nunchuk.h and nunchuk.cpp files to it. In both
cases you have to restart the IDE.

That’s all the preparation you need to implement the Pragduino game, so let’s
get started.

Setting the Stage for the Game
Most games need to handle a lot of global state, and Pragduino is no exception,
so its code starts with a list of constant and variable definitions:

Tinkering/Pragduino/Pragduino.ino
#include <Wire.h>
#include <TVout.h>
#include <fontALL.h>
#include "nunchuk.h"

const int WIDTH = 128;
const int HEIGHT = 96;
const int CH_LEN = 8;
const int MAX_TARGET = 10;
const int TARGET_LIFESPAN = 1500;

As usual, we include all header files we need and define a few constants.
WIDTH and HEIGHT contain the screen dimensions, and CH_LEN contains the
length of a single crosshair element. (The crosshairs consist of four elements.)
MAX_TARGET contains the number of circles you have to shoot, and TARGET_LIFESPAN
contains a circle’s lifespan measured in milliseconds.

Next we define several global variables:

Tinkering/Pragduino/Pragduino.ino
TVout tv;Line 1

Nunchuk nunchuk;-

-

boolean up, down, left, right, c_button, z_button;-

int chx, chy;5

int chvx, chvy;-

int target_x, target_y, target_r;-

unsigned int target_count;-

unsigned int hits;-

report erratum • discuss

Creating Your Own Video Game • 155

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

unsigned long target_creation;10

-

enum GameState {-

INTRO, STARTING, RUNNING, DONE-

};-

15

GameState state;-

In game programming you often have to manage a lot of global variables—even
in a small game like ours. First, we define a TVout instance named tv and a
Nunchuk instance named nunchuk. After that, we define Boolean variables for
all Nunchuk properties we’re interested in. They all work the same—we set
up to true, for example, if the user pushes the Nunchuk’s analog stick upward.

chx and chy contain the current position of the crosshairs. chvx and chvy contain
its X and Y velocity. Similarly, target_x and target_y contain the position of the
current target. Because the target is a circle, we also need a radius, which
we store in target_r.

target_count contains the number of targets we’ve created already, and in hits
you can find the number of targets the player has hit so far. Targets disappear
automatically after a short period of time, so we need a place to store the
creation time of the current target. This place is target_creation.

In line 12, we define an enumeration that lists our game’s potential states. If
the game is in the INTRO state, it displays a title screen and waits for the
player to press the Z button. If the player presses the Z button, the game
changes to the STARTING state. It outputs a “READY?” message and waits for
another button press to give the player some time to prepare.

The RUNNING state is where all the action is. In this state the game loop creates
new targets, checks the player’s moves, and so on. After all targets have
appeared, the game state changes to DONE. The player will see a game-over
screen and the number of targets that he or she has hit.

We need to initialize all of these global variables whenever a new game starts.
The following functions will do that:

Tinkering/Pragduino/Pragduino.ino
void init_game() {

up = down = left = right = c_button = z_button = false;
chx = WIDTH / 2;
chy = HEIGHT / 2;
chvx = 1;
chvy = 1;
state = INTRO;
target_count = 0;

Chapter 9. Tinkering with the Wii Nunchuk • 156

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

hits = 0;
create_target();

}

void create_target() {
target_r = random(7, 11);
target_x = random(target_r, WIDTH - target_r);
target_y = random(target_r, HEIGHT - target_r);
target_count++;
target_creation = millis();

}

The init_game function sets most of the global variables to constant values.
create_target is a bit more interesting. It creates a new target at a random
position and having a random size. We’ll use it later on in the game loop
whenever we need to create a new target. Note that the function ensures that
the target always stays within the screen’s bounds. Also, it uses the millis
function to determine the target’s creation time.

Adding the Setup and Loop Functions
Like all Arduino programs our little game needs setup and loop functions:

Tinkering/Pragduino/Pragduino.ino
void setup() {Line 1

randomSeed(analogRead(A0));-

tv.begin(PAL, WIDTH, HEIGHT);-

nunchuk.initialize();-

init_game();5

}-

-

void loop() {-

check_controls();-

switch (state) {10

case INTRO: intro(); break;-

case STARTING: start_game(); break;-

case RUNNING: update_game(); break;-

case DONE: game_over(); break;-

}15

tv.delay_frame(1);-

}-

-

void check_controls() {-

up = down = left = right = c_button = z_button = false;20

if (nunchuk.update())-

{-

if (nunchuk.joystick_x() < 70)-

left = true;-

if (nunchuk.joystick_x() > 150)25

right = true;-

report erratum • discuss

Creating Your Own Video Game • 157

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

if (nunchuk.joystick_y() > 150)-

up = true;-

if (nunchuk.joystick_y() < 70)-

down = true;30

c_button = nunchuk.c_button();-

z_button = nunchuk.z_button();-

}-

}-

setup initializes the random number generator using some noise from analog
pin A0. Then it initializes the screen and the Nunchuk, and finally it calls
init_game to set all global variables to reasonable values.

The loop function calls check_controls to read the current state of the Nunchuk.
Then it checks the game’s current state in a switch statement and delegates
its work to the function responsible for handling the current state.

In line 16, loop calls a function of the TVout library you haven’t seen before.
delay_frame waits for the beginning of the next vertical blanking interval—that
is, for the moment when the TV set’s electron beam wanders from the bottom
of the screen back to the top. We only want to wait for the beginning of the
next frame, so we pass 1 to delay_frame. This is necessary to prevent flickering,
because it ensures that the creation of the game’s graphics in memory stays
in sync with the actual output on the screen.

Handling the Different Game States
Handling the game’s different states is vital, so we define separate functions
for dealing with each game state:

Tinkering/Pragduino/Pragduino.ino
void intro() {Line 1

tv.select_font(font8x8);-

tv.printPGM(28, 20, PSTR("Pragduino"));-

tv.select_font(font6x8);-

tv.printPGM(16, 40, PSTR("A Pragmatic Game"));5

tv.select_font(font4x6);-

tv.printPGM(18, 74, PSTR("Press Z-Button to Start"));-

if (z_button) {-

state = STARTING;-

z_button = false;10

delay(200);-

}-

}-

-

void start_game() {15

tv.clear_screen();-

tv.select_font(font8x8);-

tv.printPGM(40, 44, PSTR("READY?"));-

Chapter 9. Tinkering with the Wii Nunchuk • 158

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

if (z_button) {-

init_game();20

state = RUNNING;-

}-

}-

-

void game_over() {25

tv.clear_screen();-

tv.select_font(font8x8);-

tv.printPGM(28, 38, PSTR("Game Over"));-

int x = (WIDTH - 7 * 8) / 2;-

if (hits > 9)30

x = (WIDTH - 8 * 8) / 2;-

tv.printPGM(x, 50, PSTR("Hits: "));-

tv.print(x + 6 * 8, 50, hits);-

if (z_button) {-

state = STARTING;35

z_button = false;-

delay(200);-

}-

}-

40

void update_game() {-

tv.clear_screen();-

tv.draw_circle(target_x, target_y, target_r, WHITE);-

move_crosshairs();-

draw_crosshairs();45

check_target();-

if (target_count == MAX_TARGET + 1) {-

state = DONE;-

z_button = false;-

delay(200);50

}-

}-

The intro, start_game, and game_over functions are very similar. They print a
message to the screen, then they wait for a Z button press. If the Z button
was pressed, they move to the next state. Before they move to the next state,
they set z_button to false and wait for 200 milliseconds. This is necessary to
debounce the Z button.

All three functions use yet another TVout method. Look at line 3, for example.
Here we use TVout’s printPGM method. It works like the regular print method,
but it reads the string to be output from the Arduino’s flash memory and not
from its precious SRAM. For applications that display a lot of constant mes-
sages, this can save a lot of memory.

report erratum • discuss

Creating Your Own Video Game • 159

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

To transfer the string into flash memory, we use the PSTR macro. It ensures
that the strings we output using printPGM will be copied to flash memory when
the program gets compiled.

Writing the Game Loop
The most central function of our game is update_game. It implements the actual
game loop and first clears the screen by calling clear_screen. Then it uses
draw_circle to draw the current target. move_crosshairs calculates the new position
of the crosshairs depending on the player’s movement. draw_crosshairs outputs
the crosshairs to the screen.

check_target determines the state of the current target—in other words, it checks
whether the user has hit the target, whether the target has been on the screen
for too long, or whether nothing special has happened. If all targets have been
shown already, the game is over.

To control the crosshairs, we use the following helper functions:

Tinkering/Pragduino/Pragduino.ino
void move_crosshairs() {

if (left) chx -= chvx;
if (right) chx += chvx;
if (up) chy -= chvy;
if (down) chy += chvy;

if (chx <= CH_LEN)
chx = CH_LEN + 1;

if (chx >= WIDTH - CH_LEN)
chx = WIDTH - CH_LEN - 1;

if (chy <= CH_LEN)
chy = CH_LEN + 1;

if (chy >= HEIGHT - CH_LEN)
chy = HEIGHT - CH_LEN - 1;

}

void draw_crosshairs() {
tv.draw_row(chy, chx - CH_LEN, chx - 1, WHITE);
tv.draw_row(chy, chx + 1, chx + CH_LEN, WHITE);
tv.draw_column(chx, chy - CH_LEN, chy - 1, WHITE);
tv.draw_column(chx, chy + 1, chy + CH_LEN, WHITE);

}

move_crosshairs checks all global variables related to the current Nunchuk state.
It updates the position of the crosshairs depending on the variable values.
Then it ensures that the crosshairs stay within the screen’s bounds.

Chapter 9. Tinkering with the Wii Nunchuk • 160

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The draw_crosshairs function actually draws the crosshairs on the screen. Instead
of using a bitmap to draw the crosshairs, we use two new TVout methods.
draw_row outputs a horizontal line, and we use it to output the two horizontal
lines of the crosshairs. Similarly, we use draw_column to draw the two vertical
lines. We leave the pixel at the crossing point empty to make the crosshairs
look a bit nicer.

You might wonder why we didn’t use a bitmap. The problem with bitmaps is
that they don’t look nice when they overlap. Even if the bitmap looks like
crosshairs, it still is a square. If you move a crosshairs bitmap over a circle,
the bitmap will hide a big part of the circle’s pixels.

To complete the game’s source code, we need two functions for managing the
targets:

Tinkering/Pragduino/Pragduino.ino
bool target_hit() {

if (z_button)
return (target_x - chx) * (target_x - chx) +

(target_y - chy) * (target_y - chy) < target_r * target_r;
return false;

}

void check_target() {
if (target_hit()) {

hits++;
create_target();

}
int remaining_time = millis() - target_creation;
if (remaining_time >= TARGET_LIFESPAN) {

create_target();
}
int w = map(TARGET_LIFESPAN - remaining_time, 0, TARGET_LIFESPAN, 0, WIDTH);
tv.draw_rect(0, 0, w, 3, WHITE, WHITE);

}

target_hit checks whether the player has hit the current target. This can only
happen if the player presses the Z button. If this is the case, we use a simple
distance calculation to see whether the crosshairs are in the circle.

To manage the current target’s lifecycle, we use check_target. If the target was
hit, we increment the hits counter and create the next target. After that, we
calculate the time the current target will stay on the screen unless it gets hit.
If this time is greater than the target’s lifespan, we create a new target. At the
end of the function, we turn the remaining time into a status bar at the top
of the screen.

report erratum • discuss

Creating Your Own Video Game • 161

http://media.pragprog.com/titles/msard2/code/Tinkering/Pragduino/Pragduino.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

With less than 200 lines of code, you’ve written a complete game for your new
video game console. It’s definitely not a blockbuster, but it’s actually fun and
a great opportunity to learn about the very basics of game programming.

Also, it should give you enough confidence to implement more advanced
games. You can find a lot of classic games on the web that use nearly the
same hardware we used in this chapter.3

What If It Doesn’t Work?
From a maker’s perspective, this chapter is an easy one. Still, things can go
wrong, especially with the wiring. Make sure you’ve connected the right pins
on the Arduino and on the Nunchuk. Also check that the wires tightly fit into
the Nunchuk’s and the Arduino’s sockets. When in doubt, use wire with a
larger diameter.

Also, check What If It Doesn’t Work?, on page 143, for all things that can go
wrong when generating video signals with the Arduino.

Exercises
• Rewrite the game we implemented in Chapter 7, Writing a Game for the

Motion-Sensing Game Controller, on page 111, so it supports the Nunchuk
controller. It should support both the analog stick and the accelerometer.
Perhaps you can switch between them using the Nunchuk buttons.

• Tinkering with Nintendo’s Wii Motion is more complicated.4 But it’s a nice
and cheap way to sharpen your tinkering skills.

• The TVout library has basic audio support. Connect a piezo buzzer to
digital pin 11 and use the tone and noTone functions to add sound capabil-
ities to the video game console. Also, add some sound effects to Pragduino.

3. See http://nootropicdesign.com/hackvision/games.html.
4. http://randomhacksofboredom.blogspot.com/2009/07/motion-plus-and-nunchuck-together-on.html

Chapter 9. Tinkering with the Wii Nunchuk • 162

report erratum • discuss

http://nootropicdesign.com/hackvision/games.html
http://randomhacksofboredom.blogspot.com/2009/07/motion-plus-and-nunchuck-together-on.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 10

Networking with Arduino
With a stand-alone Arduino, you can create countless fun and useful projects.
But as soon as you turn the Arduino into a networking device, you open up
a whole new world of possibilities.

You now have access to all of the information on the Internet, so you could
turn your Arduino into a nice, geeky weather station simply by reading data
from a weather service. You can also turn the Arduino into a web server that
provides sensor data for other devices or computers on your network.

We’ll start with a “naked” Arduino that doesn’t have any network capabilities.
As you’ll see, you can still attach it to the Internet and Tweet1 messages as
long as you connect it to a PC.

For our second project, we’ll improve the situation dramatically with an Eth-
ernet shield. Your Arduino will become a full-blown network device that can
directly access IP services, such as a Daytime service. This will turn your
Arduino into a very accurate clock.

The skills you learn in this chapter are the basis for more advanced techniques
and the projects you’ll create in the next chapter.

1. http://twitter.com

report erratum • discuss

http://twitter.com
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. An Ethernet shield for the Arduino
2. A TMP36 temperature sensor
3. Some wires
4. A breadboard
5. An Arduino board, such as the Uno, Duemilanove, or Diecimila
6. A USB cable to connect the Arduino to your computer

Using Your PC to Transfer Sensor Data to the Internet
Remember when you connected your PC to the Internet, oh, around twenty
years ago? It all started with a 38,400 baud modem, Netscape Navigator 3,
and one of those AOL floppy disks or CD-ROMs you got in the mail. Today
you probably have broadband access via cable, satellite, or DSL, and it’s
probably available everywhere in your house via Wi-Fi. So, we’ll start by using
your existing connection to connect your Arduino to the Internet.

In the following figure, you can see a typical setup for connecting an Arduino
to the Internet. A program runs on your PC and communicates with the
Arduino using the serial port. Whenever the application needs Internet access,
the program on the PC deals with it. Using this architecture, you can Tweet
interesting sensor data.

Chapter 10. Networking with Arduino • 164

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We’ll build a system that Tweets a message when the temperature in your
working room or office exceeds a certain threshold—32 degrees Celsius (90
degrees Fahrenheit). Build the temperature sensor example from Increasing
Precision Using a Temperature Sensor, on page 86, again (try to do it without
looking at the circuit) and upload the following sketch to your Arduino:

Ethernet/TwitterTemperature/TwitterTemperature.ino
#define CELSIUSLine 1

const unsigned int TEMP_SENSOR_PIN = 0;-

const unsigned int BAUD_RATE = 9600;-

const float SUPPLY_VOLTAGE = 5.0;-

void setup() {5

Serial.begin(BAUD_RATE);-

}-

-

void loop() {-

const int sensor_voltage = analogRead(TEMP_SENSOR_PIN);10

const float voltage = sensor_voltage * SUPPLY_VOLTAGE / 1024;-

const float celsius = (voltage * 1000 - 500) / 10;-

#ifdef CELSIUS-

Serial.print(celsius);-

Serial.println(" C");15

#else-

Serial.print(9.0 / 5.0 * celsius + 32.0);-

Serial.println(" F");-

#endif-

delay(5000);20

}-

This is nearly the same sketch we’ve used before. Keep in mind that you have
to set SUPPLY_VOLTAGE to 3.3 in line 4 if you’re using an Arduino that runs with
3.3V instead of 5V.

We support both Celsius and Fahrenheit values now, and you can use a
preprocessor constant to control which unit should be used. If you set the
constant CELSIUS in the first line, the application outputs the temperature in
degree Celsius. If you remove the first line or turn it into a comment line, the
application will use Fahrenheit.

To change the application’s behavior, we use the #ifdef preprocessor directive.
It checks whether a certain preprocessor constant has been set, and then it

report erratum • discuss

Using Your PC to Transfer Sensor Data to the Internet • 165

http://media.pragprog.com/titles/msard2/code/Ethernet/TwitterTemperature/TwitterTemperature.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

compiles code conditionally. In our case, it will compile the Celsius-to-
Fahrenheit formula in line 17 only if the constant CELSIUS has not been set.

Upload the sketch, and it will output the current temperature to the serial
port every five seconds. Its output looks as follows:

27.15 C
26.66 C
27.15 C

What we need now is a program running on your PC that reads this output
and Tweets a message as soon as the temperature is greater than 32 degrees
Celsius (90 degrees Fahrenheit). We could use any programming language
that is capable of reading from a serial port and that supports Twitter, but
because Processing2 has excellent support for Twitter and the serial port, we’ll
use it for this project.

The Arduino and the Internet of Things (IoT)

Today for most people the Internet is a network of computers that can be used for
looking up entertaining, useful, or interesting information. In recent years the nature
of the Internet has changed tremendously. More and more autonomous and automated
devices have joined the Internet. For many people it’s normal already to use a
smartphone to surf the web, and in a not-too-distant future, devices such as toasters
and refrigerators will be part of the Internet, too. This is the Internet of Things, where
everyday objects are able to send and receive data over a network connection.

With the advent of cheap open-source hardware and sensors, web services for pub-
lishing sensor data have become popular over the past few years. Such services allow
you to publish, read, and analyze sensor data. People from all over the world publish
data from their weather stations, environmental sensors, and so on, and they make
it available for free on the Internet.

These web services offer even more functions today and make it easy to turn an
Arduino into a full-blown member of the Internet of Things—that is, you can integrate
your Arduino with Google Mail, Facebook, eBay, and so on.

Popular services are Xivelya and Temboo.b In principle, they all work the same: you
register an account, and you get back an API key. Then you can use this key to
authenticate against the service and upload sensor data or use other functions of
their API. Usually, these services also offer special Arduino libraries that help you to
build your applications.

a. http://xively.com
b. https://www.temboo.com/

2. https://processing.org/

Chapter 10. Networking with Arduino • 166

report erratum • discuss

http://xively.com
https://www.temboo.com/
https://processing.org/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Registering an Application with Twitter
Before we start coding, we have to register our application at the Twitter
website to get API keys and an OAuth access token.3 OAuth is an authentica-
tion scheme that allows applications to use other applications’ resources. In
our case, we’ll grant our very own application the right to update our Twitter
feed without using our Twitter username and password.

To get all of the information needed, create a new application in the applica-
tions section of the Twitter website.4 After you’ve logged in, click the Create
New App button and fill out the form:

After you’ve created your new application, go to the Permissions tab and set
the application’s access level to Read and Write. Then navigate to the API
Keys tab and press the Create My Access Token button. It can take a few
moments-refresh the page a few times until the access token is available.

The API Keys tab should contain all information that you need to allow your
application to modify your Twitter status. It should look similar to this:

3. http://en.wikipedia.org/wiki/Oauth
4. https://apps.twitter.com

report erratum • discuss

Registering an Application with Twitter • 167

http://en.wikipedia.org/wiki/Oauth
https://apps.twitter.com
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Copy the API key, the API secret, the access token, and the access token
secret. You’ll need them in the next section, when we Tweet messages using
Processing.

Tweeting Messages with Processing
Processing doesn’t have Twitter support, but in Processing programs we have
direct access to Java libraries, and you can find several good Twitter libraries
for Java. One of them is Twitter4J.5 We’ll use it because it’s very mature and
has excellent OAuth support.

Download Twitter4J from its website6 and unpack it to a temporary folder.
Depending on the version you’ve downloaded, you’ll find a file named twitter4j-
core-x.y.z.jar or twitter4j-core-x.y.z-SNAPSHOT.jar in the folder. Open the Processing
IDE, create a new sketch, and then drag and drop the jar file to the IDE. (The

5. http://twitter4j.org/
6. http://twitter4j.org/en/index.html#download

Chapter 10. Networking with Arduino • 168

report erratum • discuss

http://twitter4j.org/
http://twitter4j.org/en/index.html#download
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

jar file will automatically be copied to a local folder named code.) That’s all you
have to do to give your application access to the Twitter4J library.

We proceed with some boilerplate code:

Ethernet/TweetTemperature/TweetTemperature.pde
import processing.serial.*;

final float MAX_WORKING_TEMP = 32.0;
final int LINE_FEED = 10;
final int BAUD_RATE = 9600;
final int FONT_SIZE = 32;
final int WIDTH = 320;
final int HEIGHT = 240;
final String API_KEY = "<YOUR API KEY>";
final String API_SECRET = "<YOUR API SECRET>";
final String ACCESS_TOKEN = "<YOUR ACCESS TOKEN>";
final String ACCESS_TOKEN_SECRET = "<YOUR ACCESS TOKEN SECRET>";

Serial _arduinoPort;
float _temperature;
boolean _isCelsius;
PFont _font;

void setup() {
size(WIDTH, HEIGHT);
_font = createFont("Arial", FONT_SIZE, true);
println(Serial.list());
_arduinoPort = new Serial(this, Serial.list()[0], BAUD_RATE);
_arduinoPort.clear();
_arduinoPort.bufferUntil(LINE_FEED);
_arduinoPort.readStringUntil(LINE_FEED);

}

void draw() {
background(255);
fill(0);
textFont(_font, FONT_SIZE);
textAlign(CENTER, CENTER);
if (_isCelsius)

text(_temperature + " \u2103", WIDTH / 2, HEIGHT / 2);
else

text(_temperature + " \u2109", WIDTH / 2, HEIGHT / 2);
}

As usual, we import the serial libraries for communicating with the Arduino,
and then we define some constants we’ll need later. Most of them contain the
credentials we need to access the Twitter service. With MAX_WORKING_TEMP, you
can define at which temperature the application starts to Tweet. This can be
a degrees Celsius or Fahrenheit value. The rest defines a few values we need

report erratum • discuss

Tweeting Messages with Processing • 169

http://media.pragprog.com/titles/msard2/code/Ethernet/TweetTemperature/TweetTemperature.pde
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

for the user interface, such as the screen width, the screen height, and the
font size.

After that, we define a few member variables. _arduinoPort contains a reference
to the Serial object we use to communicate with the Arduino. _temperature con-
tains the last temperature value we received from the Arduino, and _isCelsius
is true if the value we read was in degrees Celsius. We need the _font variable
to define the font we use to output the temperature on the screen.

In the setup method, we set the window size and create the font we’re going to
use. Then we print out a list of all serial devices available. We initialize our
_arduinoPort variable with the first one we find, hoping that it’s the Arduino.
You could also loop through the list automatically and search for something
that looks like an Arduino port name, but that’d be fragile, too.

We call the clear method to empty the serial port’s buffer. With bufferUntil, we
make sure that we get notified about serial events only when we’ve received
a linefeed character. The call to readStringUntil ensures that we start with a fresh
serial buffer that doesn’t contain an incomplete line of data.

The draw method prints the last temperature
we received on the screen. It sets the back-
ground color to white using background and the
text color to black using fill. Then it sets the
font and ensures the text we are printing is

centered horizontally and vertically. Eventually, we print the temperature
using the text method. To make the result look nicer, we use the official Uni-
code characters for degrees Celsius (\u2103) and Fahrenheit (\u2109).

Now let’s implement the business logic of our “Take me to the beach” alarm:

Ethernet/TweetTemperature/TweetTemperature.pde
void serialEvent(Serial port) {

final String arduinoData = port.readStringUntil(LINE_FEED);
if (arduinoData != null) {

final String[] data = split(trim(arduinoData), ' ');
if (data.length == 2 &&

(data[1].equals("C") || data[1].equals("F")))
{
_isCelsius = data[1].equals("C");
_temperature = float(data[0]);
if (Float.isNaN(_temperature))

return;
println(_temperature);
int sleepTime = 5 * 60 * 1000;
if (_temperature > MAX_WORKING_TEMP) {

tweetAlarm();

Chapter 10. Networking with Arduino • 170

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Ethernet/TweetTemperature/TweetTemperature.pde
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

sleepTime = 120 * 60 * 1000;
}
try {

Thread.sleep(sleepTime);
}
catch(InterruptedException ignoreMe) {}

}
}

}

void tweetAlarm() {
ConfigurationBuilder cb = new ConfigurationBuilder();
cb.setDebugEnabled(true)

.setOAuthConsumerKey(API_KEY)

.setOAuthConsumerSecret(API_SECRET)

.setOAuthAccessToken(ACCESS_TOKEN)

.setOAuthAccessTokenSecret(ACCESS_TOKEN_SECRET);
TwitterFactory tf = new TwitterFactory(cb.build());
Twitter twitter = tf.getInstance();
try {

Status status = twitter.updateStatus(
"Someone, please, take me to the beach!"

);
println(
"Successfully updated status to '" + status.getText() + "'."

);
}
catch (TwitterException e) {

e.printStackTrace();
}

}

Whenever new data arrives on the serial port, the Processing runtime environ-
ment calls the serialEvent method. There we try to read a line of text, and then
we check whether it contains a decimal number followed by a blank and a C
or an F character. This ensures we’ve read an actual temperature data set
and not some digital garbage.

If we got a syntactically correct temperature data set, we convert it into a float
object and check to see whether it’s greater than MAX_WORKING_TEMP. (No one
should be forced to work at temperatures that high!) If yes, we call tweetAlarm
and Tweet a message to encourage some followers to rescue us. Then we wait
for two hours until our next check. Otherwise, we wait five minutes and check
the temperature again.

tweetAlarm updates our Twitter status and is simple. In good old Java tradition,
we create a new Twitter instance using a TwitterFactory. The factory expects a
ConfigurationBuilder object that we have initialized with our Twitter application

report erratum • discuss

Tweeting Messages with Processing • 171

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Tweeting Arduinos

A useful and interesting hardware kit is Botanicalls.a It checks whether your plants
need water, and if they do, it sends a reminder message via http://twitter.com/. As
soon as you water the plant, Botanicalls dutifully sends a “Thank You” message.
Although the official version of Botanicalls is a specialized piece of hardware, you can
build it using an Arduino.b

Botanicalls certainly make your life easier. Whether the Tweeting Vending Machinec

improves your life is a matter of taste. Users of this modified vending machine have
to identify themselves using an RFID card. Whenever they buy some sweets, the
vending machine Tweets their name and what they’ve bought.

a. http://www.botanicalls.com/
b. http://www.botanicalls.com/archived_kits/twitter/
c. http://www.popsugar.com/tech/Tweeting-Vending-Machine-34558986

credentials. Finally, we invoke updateStatus. If everything went fine, we print a
success message to the console. If anything goes wrong, updateStatus will raise
an exception, and we’ll print its stack trace for debugging purposes.

That’s all the code we need, so connect your Arduino to your PC and run it!
The following figure shows what happens on Twitter when the temperature
in my working room is higher than 32 degrees Celsius. (For your first tests,
you might have to change 32.0 to a smaller value. If you don’t have to change
it, why aren’t you at the beach?)

Using a full-blown PC as an Internet relay for your Arduino is convenient,
but it’s also overkill for most applications. In the next section, you’ll learn
how to turn an Arduino into a real networking device.

Chapter 10. Networking with Arduino • 172

report erratum • discuss

http://www.botanicalls.com/
http://www.botanicalls.com/archived_kits/twitter/
http://www.popsugar.com/tech/Tweeting-Vending-Machine-34558986
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Communicating Over Networks Using an Ethernet Shield
In the previous section, you learned how to build network applications with
an Arduino by using your PC’s network connection. This approach works
nicely, but it also has a few disadvantages. The biggest problem is that you
need a complete PC, while for many applications the Arduino’s hardware
capabilities would be sufficient. In this section, you’ll learn how to solve this
problem with an Ethernet shield.

Usually, you can’t connect a naked Arduino to a network. Not only are its
hardware capabilities too limited, but also most Arduino boards don’t have
an Ethernet port. That means you can’t plug an Ethernet cable into them,
and to overcome this limitation, you have to use an Ethernet shield. Such
shields come with an Ethernet chip and Ethernet connectors and turn your
Arduino into a networking device immediately. You only have to plug it in.

You can choose from several products (the following figure shows some of
them); they all are good and serve their purpose well. For prototyping, I prefer
the “official” shield,7 because it comes with sockets for all pins and has a
microSD card slot. Alternatively, you can use the Arduino Ethernet,8 an
Arduino board that comes with an Ethernet port and doesn’t need a separate
shield.

Hardware is only one aspect of turning an Arduino into a network device. We
also need some software for network communication. The Arduino IDE comes
with a convenient Ethernet library that contains a few classes related to net-
working. We’ll use it now to access a Daytime service on the Internet.

A Daytime service9 returns the current date and time as an ASCII string.
Daytime servers listen on either TCP or UDP port 13. You can find many
Daytime services on the Internet; one of them runs at time.nist.gov. Before

7. http://www.arduino.cc/en/Main/ArduinoEthernetShield
8. http://www.arduino.cc/en/Main/ArduinoBoardEthernet
9. http://en.wikipedia.org/wiki/DAYTIME

report erratum • discuss

Communicating Over Networks Using an Ethernet Shield • 173

http://www.arduino.cc/en/Main/ArduinoEthernetShield
http://www.arduino.cc/en/Main/ArduinoBoardEthernet
http://en.wikipedia.org/wiki/DAYTIME
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

we use the service programmatically with an Arduino, see how it works using
the telnet command:

maik> telnet time.nist.gov 13
Trying 192.43.244.18...
Connected to time.nist.gov.
Escape character is '^]'.
56965 14-11-04 20:33:03 00 0 0 867.4 UTC(NIST) *
Connection closed by foreign host.

As soon as the telnet command connects to the Daytime server, it sends back
the current time and date.10 Then the service shuts down the connection
immediately.

Here’s an implementation of exactly the same behavior for an Arduino with
an Ethernet shield:

Ethernet/TimeServer/TimeServer.ino
#include <SPI.h>Line 1

#include <Ethernet.h>-

const unsigned int BAUD_RATE = 9600;-

const unsigned int DAYTIME_PORT = 13;-

5

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };-

IPAddress my_ip(192, 168, 2, 120);-

IPAddress time_server(192, 43, 244, 18); // time.nist.gov-

EthernetClient client;-

10

void setup() {-

Serial.begin(BAUD_RATE);-

Ethernet.begin(mac, my_ip);-

}-

15

void loop() {-

delay(1000);-

Serial.print("Connecting...");-

-

if (client.connect(time_server, DAYTIME_PORT) <= 0) {20

Serial.println("connection failed.");-

} else {-

Serial.println("connected.");-

delay(300);-

while (client.available()) {25

char c = client.read();-

Serial.print(c);-

}-

-

10. See http://www.nist.gov/physlab/div847/grp40/its.cfm for a detailed description of the date string’s
format.

Chapter 10. Networking with Arduino • 174

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Ethernet/TimeServer/TimeServer.ino
http://www.nist.gov/physlab/div847/grp40/its.cfm
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Serial.println("Disconnecting.");30

client.stop();-

}-

}-

First, we include the Ethernet library and define a constant for the Daytime
service port. (We also have to include the SPI library, because the Ethernet
library depends on it.) Then we define a few global variables:

• mac contains the MAC address we’re going to use for the Ethernet shield.
A MAC address is a 48-bit number that uniquely identifies a network
device.11 Usually the manufacturer sets this identifier, but for the Ethernet
shield, we have to set it ourselves; we use an arbitrary number.

Important note: the MAC address has to be unique on your network. If
you connect more than one Arduino, make sure they all have different
MAC addresses! Also note that the Arduino Ethernet and the latest ver-
sions of the Ethernet shields have a MAC address that can be found on
a sticker on their back side.

• Whenever you connect your PC to the Internet, it probably gets a new IP
address via the Dynamic Host Configuration Protocol (DHCP).12 For most
Arduino applications, a DHCP implementation is comparatively costly,
so you usually assign an IP address manually. (See how to use DHCP in
Using DHCP and DNS, on page 177.) In most cases, this will be a local
address in the 192.168.x.y range; we store this address in the my_ip variable
using the Arduino’s IPAddress class. In older versions of the Arduino IDE,
you had to use a byte array to store IP addresses. You can still do so,
because byte arrays will be converted to IPAddress objects automatically if
needed.

• To turn domain names such as time.nist.gov into an IP address, you need
access to the Domain Name System (DNS). The Arduino’s standard library
supports DNS, but we’ll find out the IP address ourselves. (See how to
use DNS in Using DHCP and DNS, on page 177.) We assign it to time_server.
The telnet command already turned the Daytime service domain name into
an IP address for us. Alternatively, you can use one of the following com-
mands to determine a domain name’s IP address:

maik> host time.nist.gov
time.nist.gov has address 192.43.244.18
maik> dig +short time.nist.gov

11. http://en.wikipedia.org/wiki/Mac_address
12. http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol

report erratum • discuss

Communicating Over Networks Using an Ethernet Shield • 175

http://en.wikipedia.org/wiki/Mac_address
http://en.wikipedia.org/wiki/Dynamic_Host_Configuration_Protocol
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

192.43.244.18
maik> resolveip time.nist.gov
IP address of time.nist.gov is 192.43.244.18
maik> ping -c 1 time.nist.gov
PING time.nist.gov (192.43.244.18): 56 data bytes
64 bytes from 192.43.244.18: icmp_seq=0 ttl=48 time=173.598 ms

--- time.nist.gov ping statistics ---
1 packets transmitted, 1 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 173.598/173.598/173.598/0.000 ms

Back to the source code! In line 9, we create a new EthernetClient object. This
class is part of the Ethernet library and allows us to create network clients
that connect to a certain IP address and port. In former versions of the Arduino
IDE, this class was named Client.

Now we have to initialize the Ethernet shield itself; we do this in line 13 in
the setup function. We have to invoke Ethernet.begin, passing it our MAC and IP
address. Then we initialize the serial port so that we can output some debug
messages. At this point, we’ve initialized all the components we need, so we
can finally connect to the Daytime server and read its output.

Please note that you can also pass the IP address of your network gateway
and your subnet mask to Ethernet.begin. This is necessary if you don’t connect
the Arduino directly to the Internet but use a router or a cable modem instead.
In this case, you can pass the gateway address as follows:

// ...
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress my_ip(192, 168, 2, 120);
IPAddress time_server(192, 43, 244, 18); // time.nist.gov
// Insert IP address of your domain name system below:
IPAddress dns(8, 8, 8, 8);
// Insert IP address of your cable or DSL router below:
IPAddress gateway(192, 168, 13, 254);

EthernetClient client(time_server, DAYTIME_PORT);
void setup() {

Ethernet.begin(mac, my_ip, dns, gateway);
Serial.begin(BAUD_RATE);

}
// ...

The loop function of our sketch starts with a short delay, allowing all compo-
nents to initialize properly. This is necessary because the Ethernet shield is
an autonomous device that is capable of working in parallel to the Arduino.
In line 20, we try to connect to the Daytime service. If the connection cannot
be established, we print an error message. Otherwise, we wait for 300 millisec-

Chapter 10. Networking with Arduino • 176

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

onds to give the service some preparation time, and then we read and print
its output character by character.

The client’s interface is similar to that of the Serial class. The available function
checks whether some bytes are still available, and read returns the next byte.
At the end, we call stop to disconnect from the service, and then we start again.

Note that our program isn’t completely robust. If the server needs longer than
300 milliseconds to deliver its data, our program will not read it. In our case
it’s not a big deal, but for more critical applications, you’d better wait until
data is available and add a timeout mechanism.

Compile and upload the program to the Arduino. Then open the serial monitor,
and you should see something like this:

Connecting...connected.
56807 14-11-04 16:34:18 50 0 0 259.2 UTC(NIST) *
Disconnecting.
Connecting...connected.
56807 14-11-04 16:34:20 50 0 0 515.5 UTC(NIST) *
Disconnecting.

We’re finished! Our Arduino is directly connected to the Internet, and it even
does something useful: we’ve turned it into a very accurate clock.

All in all, networking with an Arduino doesn’t differ much from networking
with a PC, if you use the Ethernet shield. In the next section, you’ll learn how
to use services such as DHCP and DNS with an Arduino.

Using DHCP and DNS
In the preceding section, you learned how to access IP services the “hard”
way. That is, you had to know your own IP address and the services’s IP
address, too. For your home projects, this is convenient and efficient.

As soon as you create projects that have to run in unknown environments,
you have to use a more flexible approach. If you’re going to build an actual
product based on a networking Arduino, you certainly don’t want your cus-
tomers to enter an unused IP address and upload a new sketch before they
can use it.

In such cases you need a more flexible solution. In this section you’ll determine
service addresses using the Domain Name System (DNS), and you’ll obtain
the Arduino’s IP address using the Dynamic Host Configuration Protocol
(DHCP).

Here’s a version of our time server example that uses DHCP and DNS:

report erratum • discuss

Using DHCP and DNS • 177

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

More Fun with Networking Arduinos

Wearables and e-textiles are getting more and more popular, and they’re still a good
way to impress your colleagues and friends. Different types of interactive T-shirts are
available in every well-stocked geek shop. Some of them show the current Wi-Fi
strength, while others come with a full-blown built-in electronic rock guitar.

With an Arduino LilyPad,a a Bluetooth dongle, and an Android phone, you can build
a T-shirt that displays the current number of unread emails in your inbox.b

Not only can you show the number of unread email messages, you can also use the
LilyPad and an XBee module to teach children important information about bees and
their behavior.c

a. http://arduino.cc/en/Main/ArduinoBoardLilyPad
b. http://blog.makezine.com/2010/03/30/email-counting-t-shirt/
c. http://www.instructables.com/id/Interactive-Bee-Game/

Ethernet/TimeServerDnsDhcp/TimeServerDnsDhcp.ino
#include <SPI.h>Line 1

#include <Ethernet.h>-

-

const unsigned int BAUD_RATE = 9600;-

const unsigned int DAYTIME_PORT = 13;5

-

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };-

char* time_server = "time.nist.gov";-

EthernetClient client;-

10

void setup() {-

Serial.begin(BAUD_RATE);-

if (Ethernet.begin(mac) == 0) {-

for (;;) {-

Serial.println("Could not obtain an IP address using DHCP.");15

delay(1000);-

}-

} else {-

print_ip_address(Ethernet.localIP());-

}20

}-

-

-

void loop() {-

delay(1000);25

Serial.print("Connecting...");-

if (client.connect(time_server, DAYTIME_PORT) <= 0) {-

Serial.println("connection failed.");-

} else {-

Serial.println("connected.");30

Chapter 10. Networking with Arduino • 178

report erratum • discuss

http://arduino.cc/en/Main/ArduinoBoardLilyPad
http://blog.makezine.com/2010/03/30/email-counting-t-shirt/
http://www.instructables.com/id/Interactive-Bee-Game/
http://media.pragprog.com/titles/msard2/code/Ethernet/TimeServerDnsDhcp/TimeServerDnsDhcp.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

delay(300);-

-

while (client.available()) {-

char c = client.read();-

Serial.print(c);35

}-

-

Serial.println("Disconnecting.");-

client.stop();-

}40

}-

-

void print_ip_address(IPAddress ip) {-

const unsigned int OCTETS = 4;-

Serial.print("We've got the following IP address: ");45

for (unsigned int i = 0; i < OCTETS; i++) {-

Serial.print(ip[i]);-

if (i != OCTETS - 1)-

Serial.print(".");-

}50

Serial.println();-

}-

This program does the same as the program in the previous section, but it
doesn’t contain any explicit IP addresses. Apart from that, it doesn’t differ
much from the original version. The first difference is in line 8. Here we no
longer declare the variable time_server as an IPAddress object but as a string. The
string contains the name of the server we’re going to connect to.

In line 13, we no longer pass our own IP address to Ethernet’s begin method. In
this case, begin tries to obtain an unique IP address using a DHCP server in
the local network. If it cannot obtain an IP address, we start an endless loop
that prints an error message every second. Otherwise, we print the IP address
we’ve got, using a small helper function named print_ip_address.

Eventually, in line 27, we pass our time_server string to the connect method. Note
that we didn’t change the line; we’ve only changed the type of the time_server
variable. If connect gets a string and not an IPAddress object, it tries to look up
the IP address belonging to the server name stored in the string using DNS.

Run the program, and you’ll see output similar to the following:

We've got the following IP address: 192.168.2.113
Connecting...connected.

56807 14-11-04 16:34:18 50 0 0 259.2 UTC(NIST) *
Disconnecting.

report erratum • discuss

Using DHCP and DNS • 179

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

You might ask yourself why you shouldn’t enjoy the convenience of DHCP
and DNS all the time. First of all, DHCP and DNS are two more things that
can go wrong. Debugging embedded systems is hard enough already, so you
shouldn’t make it harder by using services that you don’t absolutely need.
For most applications, hardwired IP addresses will do the job.

Another reason is code size. DHCP and DNS support will increase significantly
the size of the resulting binary file. Adding DHCP support to our time service
program increased its size by nearly 3,500 bytes. Still, DHCP and DNS are
useful tools for certain applications, and it’s great that they’re now part of
the Arduino’s standard library.

In the next chapter, you’ll learn how to implement another important network
protocol: you will send emails using an Arduino.

Alternative Networking Technologies

Ethernet is one of the most popular and most powerful networking technologies.
Using an Ethernet shield, you can easily connect your Arduino to the Internet both
as a client and as a server.

Depending on your project’s needs, it’s sometimes better to use a wireless connection.
With a Wi-Fi shield,a you can easily turn your Arduino into a wireless networking
device.

But often you don’t need the full power of Ethernet, especially if you need only short-
range communication in a personal area network. You can choose from a variety of
options, but Bluetooth and ZigBeeb are probably the most popular. Excellent solutions
for both of them are available for the Arduino.

Finally, you can even participate in cellular networks with your Arduino. Plug in a
GSM shieldc and your SIM card, and you are ready to go.

a. http://arduino.cc/en/Main/ArduinoWiFiShield
b. http://en.wikipedia.org/wiki/Zigbee
c. http://arduino.cc/en/Main/ArduinoGSMShield

What If It Doesn’t Work?
Networks are complex and complicated beasts, and many things can go wrong
when trying the examples in this chapter. The most common problems are
the following:

• You have chosen the wrong serial port in the Processing application. By
default, the application uses the first serial port it can find. It might be
that you have connected your Arduino to another port. In this case, you

Chapter 10. Networking with Arduino • 180

report erratum • discuss

http://arduino.cc/en/Main/ArduinoWiFiShield
http://en.wikipedia.org/wiki/Zigbee
http://arduino.cc/en/Main/ArduinoGSMShield
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

have to change the index 0 in the statement arduinoPort = new Serial(this, Seri-
al.list()[0], BAUD_RATE); accordingly.

• You forgot to plug the Ethernet cable into the Ethernet shield.

• Your network router has a MAC whitelist that allows only certain MAC
addresses to access the network. Make sure that the MAC address you
use in your sketches is whitelisted. Check your router’s documentation.

• You have used the same MAC address twice on your network.

• You’ve used an IP address that isn’t allowed in your network or that is
used already by another device. Double-check your IP address.

• You’ve used the wrong credentials for accessing a service such as Twitter.
Make sure you use the right OAuth tokens.

• Twitter doesn’t allow duplicate Tweets. So, whenever your application
fails to Tweet a message, make sure you haven’t Tweeted it recently.

• Networks have become very reliable over the last couple of decades, but
sometimes they are still fragile. So, it might well be that connections fail
or that you run into timeouts. Try increasing the delays in your sketches.

Exercises
• Search the Web for other Ethernet shield projects and build at least one

of them. A very ambitious project tries to implement a complete web
browser on the Arduino, for example.13

• Register an account at Xively, Temboo, or any other IoT service. Work
through their tutorials and create at least one Arduino application.

• Try at least one additional networking technology, such as Bluetooth, Wi-
Fi, or XBee, with your Arduino.

13. http://hackaday.io/project/3116-pip-arduino-web-browser

report erratum • discuss

Exercises • 181

http://hackaday.io/project/3116-pip-arduino-web-browser
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 11

Creating a Burglar Alarm with Email
Notification

In the preceding chapter, you learned how to access networking services with
the Arduino in various ways. Adding networking capabilities to an Arduino
enables you to create countless useful projects. In this chapter, you’ll use
your newly gained knowledge to build a real-world project: a burglar alarm
that uses email notification.

The burglar alarm will send you an email whenever it detects movement in
your living room during your absence. To achieve this, you first have to learn
how to send emails. You already know a lot about networking with an Arduino,
so this won’t be too difficult.

You also need to know how to detect motion. So you’ll also learn how passive
infrared (PIR) sensors work and how you can control them with an Arduino.

At the end of the chapter, not only will you have learned some useful skills,
but you’ll also feel much safer when the burglar alarm is running.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. An Ethernet shield for the Arduino
2. A PIR motion sensor
3. Some wires
4. A breadboard
5. An Arduino board, such as the Uno, Duemilanove, or Diecimila
6. A USB cable to connect the Arduino to your computer

Emailing from the Command Line
Although email is an important service, only a few people know how it actu-
ally works behind the scenes. To send emails from an Arduino, we could
choose the easy path and use a PC as an email relay, as we did in Tweeting
Messages with Processing, on page 168, to Tweet messages. As real hackers,
we’ll follow a more sophisticated path and implement a subset of the Simple
Mail Transfer Protocol (SMTP).1

1. http://en.wikipedia.org/wiki/Smtp

Chapter 11. Creating a Burglar Alarm with Email Notification • 184

report erratum • discuss

http://en.wikipedia.org/wiki/Smtp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

SMTP is a typical Internet protocol. It uses only text, and it is mainly line-
based; that is, you exchange information line by line. A typical email consists
of only a few attributes: a sender, a receiver, a subject, and a message body.
To transmit an email, you have to send a request to an SMTP server. The
request has to adhere to the SMTP specification.

Before we send an email using an Arduino and an Ethernet shield, you should
learn how to send an email from a command line using the telnet command.
To do so, you have to find an SMTP server that actually allows you to send
emails. This isn’t as easy as it sounds.

The biggest problem is that over the years, SMTP servers got very good at
detecting spam messages. Often you can’t send an email manually using a
telnet session because the SMTP server thinks it’s spam. Usually, the SMTP
server will accept your commands, but eventually it will tell you that it won’t
send your email.

Also, many SMTP servers today insist on encrypted connections, which is a
good thing. Implementing the cryptographic algorithms on an Arduino is quite
difficult and uses a lot of resources.

So, even with your email provider’s SMTP server, you might run into big
problems when you try to use it for sending emails from your Arduino.

To overcome such issues, you can use a special SMTP service, such as
SMTP2GO.2 Most of these services support unencrypted connections and do
not restrict access in any way. Of course, you have to pay for the service if
the number of emails you send exceeds a certain limit. Most services offer a
free account that allows you to send a few emails per day or per month. As
of this writing, SMTP2GO allows you to send twenty emails per day for free.
If your burglar alarm sends more than twenty emails per day, you should
consider moving to a new neighborhood anyway.

To follow this chapter’s email examples, I strongly suggest you register an
account at a free SMTP service, such as SMTP2GO. If you have access to an
unrestricted SMTP server already, you can use that one, of course.

The following telnet session shows you how to send an email using SMTP2GO:

maik> telnet smtpcorp.com 2525
Trying 207.58.147.66...
Connected to smtpcorp.com.
Escape character is '^]'.
220 smtpcorp.com ESMTP Exim 4.80 Sun, 01 Jun 2014 18:22:28 +0000

2. http://www.smtp2go.com/

report erratum • discuss

Emailing from the Command Line • 185

http://www.smtp2go.com/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

EHLO
250-smtpcorp.com Hello dslb-088-077-003-169.pools.example.net [88.77.3.169]
250-SIZE 52428800
250-8BITMIME
250-PIPELINING
250-AUTH CRAM-MD5 PLAIN LOGIN
250-STARTTLS
250 HELP
AUTH LOGIN
334 VXNlcm5hbWU6
bm90bXl1c2VybmFtZQ==
334 UGFzc3dvcmQ6
bm90bXlwYXNzd29yZA==
235 Authentication succeeded
MAIL FROM:<arduino@example.com>
250 OK
RCPT TO:<info@example.com>
250 Accepted <info@example.com>
DATA
354 Enter message, ending with "." on a line by itself
from:arduino@example.com
to:info@example.com
subject:This is a test

Really, it is a test!
.
250 OK id=1WrAQ9-4gfLuZ-5U
QUIT
221 smtpcorp.com closing connection
Connection closed by foreign host.

Although it’s more complex, this session is similar to our Daytime example.
We only send more complex commands. (By the way, you don’t have to write
the commands in uppercase.) Please note that we’re connecting to port 2525,
which is not the standard SMTP port (25). Check your SMTP service provider’s
website to see what port you have to use.

We start the session using EHLO. We use the EHLO command to tell the SMTP
server that we’d like to use a slightly extended version of SMTP that supports
authentication.

After that, we send the AUTH LOGIN command to tell the SMTP server that we’d
like to send our username and password. The SMTP server sends back the
string VXNlcm5hbWU6. It looks a bit weird at first, but it’s only the string
“Username:” encoded using Base64.3

3. http://en.wikipedia.org/wiki/Base64 At http://www.freeformatter.com/base64-encoder.html, you can convert
text into Base64 strings.

Chapter 11. Creating a Burglar Alarm with Email Notification • 186

report erratum • discuss

http://en.wikipedia.org/wiki/Base64
http://www.freeformatter.com/base64-encoder.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We send our username and encode it using Base64, too. The SMTP server’s
reply is UGFzc3dvcmQ6 (“Password:”), so we send our password (encoded
using Base64).

Note that although Base64 data looks cryptic, it’s not encrypted at all. It’s as
insecure as plain text, and there are software developers who can read Base64
data as quickly as regular text. You can find countless Base64 converters on
the Web, and there’s a Base64 library for nearly every programming language.

After the authentication succeeds, we tell the server that we’d like to send an
email using MAIL FROM:. The email address we provide with this command will
be used by the server in case our email bounces back. Note that the server
sends back a response line for every request. These responses always start
with a three-digit status code.

The RCPT TO: command sets the recipient’s email address. If you’d like to send
an email to more than one recipient, you have to repeat the command for
each of them.

With the DATA command, we tell the server that we now start to transmit the
email’s attributes. Email attributes are mainly a list of key/value pairs where
key and value are delimited by a colon. So in the first three lines, we set the
attributes “from,” “to,” and “subject,” and they all have the meaning you’d
expect when sending an email.

You separate the email’s body from the attributes using a blank line. To mark
the end of the email body, send a line containing a single period. Send the
QUIT command to end the session with the SMTP server.

You should find a new email in your inbox or in your spam folder. If not, try
another SMTP server first. Things can still go wrong, and although simple in
theory, SMTP can be a complex beast in practice. SMTP servers often return
helpful error messages that might help you quickly solve your problem.

If you want to give your current SMTP server a try, you have to find out its
address first. Open a terminal and enter the following:

maik> nslookup
> set type=mx
> gmail.com
Server: 192.168.2.1
Address: 192.168.2.1#53
Non-authoritative answer:
gmail.com mail exchanger = 5 gmail-smtp-in.l.google.com.
gmail.com mail exchanger = 10 alt1.gmail-smtp-in.l.google.com.
gmail.com mail exchanger = 20 alt2.gmail-smtp-in.
> exit

report erratum • discuss

Emailing from the Command Line • 187

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

This command returns a list of all mail exchange servers (MX) that belong to
the domain gmail.com (replace it with the domain of your email provider) and
that are available on your network. In this case they all belong to Google Mail,
and you cannot use them to send emails from your Arduino, because Google
Mail insists on an encrypted connection.

Provided your email provider is less restrictive, you can try to send an email
using no authentication and no encryption at all. Open a connection to the
SMTP standard port 25 and replace the server name smtp.example.com and
all email addresses accordingly in the following telnet session:

maik> telnet smtp.example.com 25
Trying 93.184.216.119...
Connected to smtp.example.com.
Escape character is '^]'.
220 mx.example.com ESMTP q43si10820020eeh.100
HELO
250 mx.example.com at your service
MAIL FROM: <arduino@example.com>
250 2.1.0 OK q43si10820020eeh.100
RCPT TO: <info@example.com>
250 2.1.5 OK q43si10820020eeh.100
DATA
354 Go ahead q43si10820020eeh.100
from: arduino@example.com
to: info@example.com
subject: This is a test

Really, this is a test!
.
250 2.0.0 OK 1286819789 q43si10820020eeh.100
QUIT
221 2.0.0 closing connection q43si10820020eeh.100
Connection closed by foreign host.

Here we send the HELO command (the spelling is correct) to establish a session
with the SMTP server that doesn’t need authentication information. The rest
of the conversation looks exactly like our previous example.

Sometimes you have to try a few things before you’re able to send an email
from your command line. Don’t proceed until you succeed, because sending
email from your command line is the basis for the next section, in which you’ll
learn how to send emails with an Arduino.

Chapter 11. Creating a Burglar Alarm with Email Notification • 188

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Emailing Directly from an Arduino
To send an email from the Arduino, we’ll basically implement the telnet session
from the previous chapter. Instead of hardwiring the email’s attributes into
the networking code, we’ll create create something more advanced.

We start with an Email class:

Ethernet/Email/email.h
#ifndef __EMAIL__H_
#define __EMAIL__H_

class Email {
String _from, _to, _subject, _body;

public:

Email(
const String& from,
const String& to,
const String& subject,
const String& body

) : _from(from), _to(to), _subject(subject), _body(body) {}

const String& getFrom() const { return _from; }
const String& getTo() const { return _to; }
const String& getSubject() const { return _subject; }
const String& getBody() const { return _body; }

};

#endif

This class encapsulates an email’s four most important attributes—the email
addresses of the sender and the recipient, a subject, and a message body.
We store all attributes as String objects.

Wait a minute…a String class? Yes! The Arduino IDE comes with a full-blown
string class.4 It doesn’t have as many features as the C++ or Java string
classes, but it’s still way better than messing around with char pointers. You’ll
see how to use it in a few paragraphs.

The rest of our Email class is pretty straightforward. In the constructor, we
initialize all instance variables, and we have methods for getting every single
attribute. We now need an SmtpService class for sending Email objects:

4. http://arduino.cc/en/Reference/StringObject

report erratum • discuss

Emailing Directly from an Arduino • 189

http://media.pragprog.com/titles/msard2/code/Ethernet/Email/email.h
http://arduino.cc/en/Reference/StringObject
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Ethernet/Email/smtp_service.h
#ifndef __SMTP_SERVICE__H_Line 1

#define __SMTP_SERVICE__H_-

-

#include "email.h"-

5

class SmtpService {-

boolean _use_auth;-

IPAddress _smtp_server;-

unsigned int _port;-

String _username;10

String _password;-

-

void read_response(EthernetClient& client) {-

delay(4000);-

while (client.available()) {15

const char c = client.read();-

Serial.print(c);-

}-

}-

20

void send_line(EthernetClient& client, String line) {-

const unsigned int MAX_LINE = 256;-

char buffer[MAX_LINE];-

line.toCharArray(buffer, MAX_LINE);-

Serial.println(buffer);25

client.println(buffer);-

read_response(client);-

}-

-

public:30

-

SmtpService(-

const IPAddress& smtp_server,-

const unsigned int port) : _use_auth(false),-

_smtp_server(smtp_server),35

_port(port) { }-

-

SmtpService(-

const IPAddress& smtp_server,-

const unsigned int port,40

const String& username,-

const String& password) : _use_auth(true),-

_smtp_server(smtp_server),-

_port(port),-

_username(username),45

_password(password) { }-

-

void send_email(const Email& email) {-

EthernetClient client;-

Chapter 11. Creating a Burglar Alarm with Email Notification • 190

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Ethernet/Email/smtp_service.h
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Serial.print("Connecting...");50

-

if (client.connect(_smtp_server, _port) <= 0) {-

Serial.println("connection failed.");-

} else {-

Serial.println("connected.");55

read_response(client);-

if (!_use_auth) {-

Serial.println("Using no authentication.");-

send_line(client, "helo");-

}60

else {-

Serial.println("Using authentication.");-

send_line(client, "ehlo");-

send_line(client, "auth login");-

send_line(client, _username);65

send_line(client, _password);-

}-

send_line(-

client,-

"mail from: <" + email.getFrom() + ">"70

);-

send_line(-

client,-

"rcpt to: <" + email.getTo() + ">"-

);75

send_line(client, "data");-

send_line(client, "from: " + email.getFrom());-

send_line(client, "to: " + email.getTo());-

send_line(client, "subject: " + email.getSubject());-

send_line(client, "");80

send_line(client, email.getBody());-

send_line(client, ".");-

send_line(client, "quit");-

client.println("Disconnecting.");-

client.stop();85

}-

}-

};-

-

#endif90

Admittedly, this is a lot of code, but we’ll walk through it step by step. First,
the SmtpService class encapsulates the SMTP server’s IP address and its port.
These attributes are required in any case. In addition, we store a username
and a password in case someone’s going to use an authenticated connection.

To communicate with an SMTP server, we have to read its responses, and we
do that using the private read_response method starting on line 13. It waits for

report erratum • discuss

Emailing Directly from an Arduino • 191

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

four seconds (SMTP servers usually are very busy, because they have to send
a lot of spam), and then it reads all the data sent back by the server and
outputs it to the serial port for debugging purposes.

Before we can process responses, we have to send requests. send_line, beginning
in line 21, sends a single command to an SMTP server. You have to pass the
connection to the server as an EthernetClient instance, and the line you’d like
to send has to be a String object.

To send the data stored in a String object, we need to access the character data
it refers to. We can use toCharArray or getBytes to retrieve this information. These
two methods do not return a pointer to the string’s internal buffer. Instead,
they expect you to provide a sufficiently large char array and its size. That’s
why we copy line’s content to buffer before we output it to the serial and Ethernet
ports. After we’ve sent the data, we read the server’s response and print it to
the serial port.

There aren’t any surprised in the public interface. There are two constructors.
The first, on line 32, expects the SMTP server’s IP address and its port. If you
use it, the SmtpService class assumes you’re not using authentication.

To authenticate against the SMTP service using a username and a password,
you have to use the second constructor, starting in line 38. In addition to the
SMTP server’s IP address and port, it expects the username and password
encoded in Base64.

The send_email method is the largest piece of code in our class, but it’s also one
of the simplest. It mimics exactly our telnet session. The only thing worth
mentioning is line 57. Here we check whether authentication information has
been provided in the constructor. If not, we send the HELO command. If
authentication information has been provided, we send the EHLO command
and the corresponding authentication information.

Let’s use our classes now to actually send an email:

Ethernet/Email/Email.ino
#include <SPI.h>Line 1

#include <Ethernet.h>-

#include "smtp_service.h"-

-

const unsigned int SMTP_PORT = 2525;5

const unsigned int BAUD_RATE = 9600;-

const String USERNAME = "bm90bXl1c2VybmFtZQ=="; // Encoded in Base64.-

const String PASSWORD = "bm90bXlwYXNzd29yZA=="; // Encoded in Base64.-

-

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };10

IPAddress my_ip(192, 168, 2, 120);-

Chapter 11. Creating a Burglar Alarm with Email Notification • 192

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Ethernet/Email/Email.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

// Insert IP address of your SMTP server below!-

IPAddress smtp_server(0, 0, 0, 0);-

15

SmtpService smtp_service(smtp_server, SMTP_PORT, USERNAME, PASSWORD);-

-

void setup() {-

Ethernet.begin(mac, my_ip);-

Serial.begin(BAUD_RATE);20

delay(1000);-

Email email(-

"arduino@example.com",-

"info@example.net",-

"Yet another subject",25

"Yet another body"-

);-

smtp_service.send_email(email);-

}-

30

void loop() {}-

No surprises here. We define constants for the SMTP port, the MAC address,
the username, the password, and so on; then we create an SmtpService instance.
In the setup function, we initialize the Ethernet shield and the serial port, then
wait for a second to let things settle down. In line 22, we create a new Email
object and pass it to the send_email method.

Figure 28, A typical SMTP session on the Arduino, on page 194 shows this in
action (including authentication).

Now we know how to send emails with an Arduino, but to build our burglar
alarm, we still have to learn how to detect motion.

Detecting Motion Using a Passive Infrared Sensor
Detecting motion is a useful technique, and you probably already know devices
that turn on the light in your garden or at your door whenever someone is
near enough. Most use passive infrared sensors (PIR)5 for motion detection.

Nearly every object emits infrared light and a PIR sensor measures exactly
this kind of light. Detecting motion is comparatively easy if you’re already
able to receive the infrared radiation emitted by objects in the sensor’s field
of view. If the sensor receives the infrared light emitted by a wall and suddenly
a human being or an animal moves in front of the wall, the infrared light
signal will change.

5. http://en.wikipedia.org/wiki/Passive_infrared_sensor

report erratum • discuss

Detecting Motion Using a Passive Infrared Sensor • 193

http://en.wikipedia.org/wiki/Passive_infrared_sensor
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Figure 28—A typical SMTP session on the Arduino

Off-the-shelf sensors hide these details, so you can use a single digital pin to
check whether someone is moving in the sensor’s field of view. The Parallax
PIR sensor6 is a good example of such a device, and we can use it as the basis
of our burglar alarm.

Figure 29—Top and bottom of a passive infrared sensor

6. http://www.parallax.com/product/555-28027

Chapter 11. Creating a Burglar Alarm with Email Notification • 194

report erratum • discuss

http://www.parallax.com/product/555-28027
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The PIR sensor has three pins: power, ground, and signal. Connect power to
the Arduino’s 5V supply, ground to one of the Arduino’s GND pins, and signal
to digital pin 2. In the following figure, you see a circuit diagram that connects
a PIR sensor from Adafruit7 to an Arduino. Note that PIR sensors from different
vendors often differ in the order of their connectors. The PIR sensor in Figure
29, Top and bottom of a passive infrared sensor, is different, so you should
always make sure you connect the correct pins.

The PIR sensor usually also has a jumper that you can use for changing its
behavior. For our project, it has to be in position H; the jumper has to cover
the pin next to the H. (Lady Ada has an excellent tutorial on PIR sensors.)8

Then enter the following code in the Arduino IDE:

Ethernet/MotionDetector/MotionDetector.ino
const unsigned int PIR_INPUT_PIN = 2;Line 1

const unsigned int BAUD_RATE = 9600;-

-

class PassiveInfraredSensor {-

int _input_pin;5

-

public:-

PassiveInfraredSensor(const int input_pin) {-

_input_pin = input_pin;-

pinMode(_input_pin, INPUT);10

}-

const bool motion_detected() const {-

return digitalRead(_input_pin) == HIGH;-

}-

};15

-

PassiveInfraredSensor pir(PIR_INPUT_PIN);-

-

void setup() {-

Serial.begin(BAUD_RATE);20

}-

7. http://www.adafruit.com/products/189
8. https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor

report erratum • discuss

Detecting Motion Using a Passive Infrared Sensor • 195

http://media.pragprog.com/titles/msard2/code/Ethernet/MotionDetector/MotionDetector.ino
http://www.adafruit.com/products/189
https://learn.adafruit.com/pir-passive-infrared-proximity-motion-sensor
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

-

void loop() {-

if (pir.motion_detected()) {-

Serial.println("Motion detected");25

} else {-

Serial.println("No motion detected");-

}-

delay(200);-

}30

With the constant PIR_INPUT_PIN, you can define the digital pin you’ve connected
your PIR sensor to. In line 4, we begin the definition of a class named Passive-
InfraredSensor that encapsulates all things related to PIR sensors.

We define a member variable named _input_pin that stores the number of the
digital pin we’ve connected our sensor to. Then we define a constructor that
expects the pin number as an argument and assigns it to our member variable.

The only method we need to define is motion_detected. It returns true if it has
currently detected a motion and false otherwise. So, it has to check only
whether the current state of the sensor’s digital pin is HIGH or LOW.

Compile the sketch and upload it to your Arduino. You should see an output
similar to the following screenshot when you start to wave your hand in front
of the sensor.

Now we’ve built the two main components of our burglar alarm, and the only
thing left to do is to bring them both together. We’ll do that in the next section.

Chapter 11. Creating a Burglar Alarm with Email Notification • 196

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Bringing It All Together
With our PassiveInfraredSensor and SmtpService classes, it’s a piece of cake to build
a burglar alarm with email notifications. Connect the PIR sensor to the Eth-
ernet shield, as shown in the following figure.

Then enter the following code in your Arduino IDE:

Ethernet/BurglarAlarm/burglar_alarm.h
#ifndef __BURGLAR_ALARM_H__Line 1

#define __BURGLAR_ALARM_H__-

#include "pir_sensor.h"-

#include "smtp_service.h"-

5

class BurglarAlarm {-

PassiveInfraredSensor _pir_sensor;-

SmtpService _smtp_service;-

void send_alarm() {-

Email email(10

"arduino@example.com",-

"info@example.net",-

"Intruder Alert!",-

"Someone's moving in your living room!"-

);15

_smtp_service.send_email(email);-

}-

-

public:-

BurglarAlarm(20

const PassiveInfraredSensor& pir_sensor,-

const SmtpService& smtp_service) :-

_pir_sensor(pir_sensor),-

_smtp_service(smtp_service)-

{25

}-

-

-

report erratum • discuss

Bringing It All Together • 197

http://media.pragprog.com/titles/msard2/code/Ethernet/BurglarAlarm/burglar_alarm.h
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void check() {-

Serial.println("Checking");30

if (_pir_sensor.motion_detected()) {-

Serial.println("Intruder detected!");-

send_alarm();-

}-

}35

};-

#endif-

This defines a class named BurglarAlarm that aggregates all the code we’ve
written so far. It encapsulates a SmtpService instance and a PassiveInfraredSensor
object. Its most complex method is send_alarm, which sends a predefined email.

The rest of the BurglarAlarm class is pretty straightforward. Beginning on line
20, we define the constructor that initializes all private members. If the PIR
sensor detects movement, the check method sends an email.

Let’s use the BurglarAlarm class:

Ethernet/BurglarAlarm/BurglarAlarm.ino
#include <SPI.h>
#include <Ethernet.h>
#include "burglar_alarm.h"

const unsigned int PIR_INPUT_PIN = 2;
const unsigned int SMTP_PORT = 25;
const unsigned int BAUD_RATE = 9600;
const String USERNAME = "bm90bXl1c2VybmFtZQ=="; // Encoded in Base64.
const String PASSWORD = "bm90bXlwYXNzd29yZA=="; // Encoded in Base64.

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress my_ip(192, 168, 2, 120);

// Insert IP address of your SMTP server below!
IPAddress smtp_server(0, 0, 0, 0);
PassiveInfraredSensor pir_sensor(PIR_INPUT_PIN);
SmtpService smtp_service(smtp_server, SMTP_PORT, USERNAME, PASSWORD);
BurglarAlarm burglar_alarm(pir_sensor, smtp_service);

void setup() {
Ethernet.begin(mac, my_ip);
Serial.begin(BAUD_RATE);
delay(20 * 1000);

}

void loop() {
burglar_alarm.check();
delay(3000);

}

Chapter 11. Creating a Burglar Alarm with Email Notification • 198

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Ethernet/BurglarAlarm/BurglarAlarm.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

First we include all of the libraries we need, and we define constants for the
PIR sensor pin and our MAC address. Then we define SmtpService and PassiveIn-
fraredSensor objects and use them to define a BurglarAlarm instance. Note that we
pass a username and a password, implying that we’re using an authenticated
SMTP connection to send our emails. If you use an unauthenticated connec-
tion, you can safely remove the USERNAME and PASSWORD parameters and all of
their occurrences.

In the setup method, we define the serial port and the Ethernet shield. I’ve
also added a delay of twenty seconds, which gives you enough time to leave
the room before the alarm begins to work.

The loop function is simple, too. It delegates all the work to BurglarAlarm’s check
method. In the following figure, you can see what happens when the burglar
alarm detects an intruder.

Did you notice how easy object-oriented programming on an embedded device
can be? We’ve cleanly hidden in two small classes the complexity of both
email and the PIR sensor. To build the burglar alarm, we then only had to
write some glue code.

One word regarding privacy: do not abuse the project in this chapter to observe
other people without their knowledge. Not only is it unethical, but in many
countries it’s even illegal!

In this and the preceding chapter, you learned different ways to connect the
Arduino to the Internet. Some of them require an additional PC, while others
need an Ethernet shield, but they all open the door to a whole new range of
embedded computing applications.

report erratum • discuss

Bringing It All Together • 199

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Networking is one of those techniques that may have a direct impact on the
outside world. In the next chapter, you’ll learn about another technique that
has similar effects: you’ll learn how to control devices remotely.

What If It Doesn’t Work?
The burglar alarm is a networking project, so you should check all the things
mentioned in What If It Doesn’t Work?, on page 180. In addition, you should
double-check the connection parameters and authentication information for
your email provider. Did you use the correct IP address for your email
provider? Did you use the right SMTP port? Did you use the right username
and password? Did you use the right Base64 version of the username and
password?

PIR sensors are fairly simple devices. Still, you can wire them the wrong way,
so if the motion detection doesn’t work, double-check the wiring.

Exercises
• Build a project similar to the burglar alarm, but use another type of sen-

sor. There’s tons of inspiration out there on the Web.9

• Add the current timestamp to the burglar alarm email. Get the timestamp
from a Daytime service.

• Add support for DHCP and DNS to the burglar alarm.

• Add support for Base64 to the burglar alarm, so you no longer have to
manually encode your username and password. A Base64 library is
available.10

• Add a piezo buzzer to the project and emit a beeping sound whenever a
burglar is detected.

• Get a TTL Serial Camera11 and attach photos of the burglar to your emails.
This is a fairly advanced exercise. You have to learn how to control the
camera, and you also have to learn how to send email attachments.

9. http://www.tigoe.net/pcomp/code/arduinowiring/873
10. https://github.com/adamvr/arduino-base64
11. https://learn.adafruit.com/ttl-serial-camera/overview

Chapter 11. Creating a Burglar Alarm with Email Notification • 200

report erratum • discuss

http://www.tigoe.net/pcomp/code/arduinowiring/873
https://github.com/adamvr/arduino-base64
https://learn.adafruit.com/ttl-serial-camera/overview
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 12

Creating Your Own Universal Remote
Control

Remote controls add a lot of convenience to our lives, but they aren’t without
annoyances. Sometimes remotes don’t have a certain function that you’d like,
such as a sleep timer. Plus, remote controls seem to reproduce at the same
rate as rabbits. They quickly occupy your whole coffee table, and you have
to feed them with expensive batteries that you don’t have at home when you
need them during a football game. Universal remote controls reduce the pain,
but even the most expensive products aren’t perfect.

Although we use remote controls every day, few of us understand how they
work. In this chapter, you’ll find out how remote controls work from the inside
out, and then you’ll build your own universal remote control that’s better
than a store-bought one because you can fully customize it to your needs.
You can easily add all of your favorite functions, and you can add functions
that other remotes don’t offer. If a commercial product doesn’t support a
certain vendor, you’re usually stuck. With your own remote, you can easily
add new protocols. You can even support not only infrared, but also more
transmission technologies, such as Bluetooth or Wi-Fi.

We get started by learning the basics of infrared signaling. You’ll build an
infrared circuit to grab control codes from any remote you have on hand.
Once you grab the control codes, you can emit them using an infrared LED,
and you’ll start to build your own universal remote control.

Then we’ll even take the idea of a remote control a step further. Once we have
a universal remote, we’ll control the Arduino itself using the serial port or an
Ethernet connection. This way, you can control the Arduino using a web
browser, so you can control your TV set or DVD player using a web browser.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What You Need

1. One or more infrared remote controls. They can be from your TV set or
your DVD player, for example.

2. An Ethernet shield for the Arduino.
3. An infrared receiver, such as the PNA4602 or the TSOP38238.
4. A 100Ω resistor.
5. An infrared LED.
6. Some wires.
7. A breadboard.
8. An Arduino board, such as the Uno, Duemilanove, or Diecimila.
9. A USB cable to connect the Arduino to your computer.

Understanding Infrared Remote Controls
To wirelessly control a device such as a TV set, you need a sender and a
receiver. The receiver usually is built into the device to be controlled, and the
sender is part of a separate remote control. Although you can choose from a
variety of technologies, such as Bluetooth or Wi-Fi, most modern remote
controls still use infrared light for communication.

Using infrared to transmit signals has several advantages. It is invisible to
human beings, so it won’t bother you. Also, you can generate it cheaply with
infrared LEDs that can be integrated easily into electronic circuits. So, for

Chapter 12. Creating Your Own Universal Remote Control • 202

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

many purposes, such as controlling devices in a typical household, it’s an
excellent choice.

But infrared also has some drawbacks. It doesn’t work through walls or doors,
and the distance between the remote control and the operated device is fairly
limited. Even more importantly, the infrared signal is subject to interference
from other light sources.

To keep possible distortions caused by other light sources to a minimum, the
infrared signal has to be modulated. That means you turn the LED on and
off at a certain frequency, usually somewhere between 36 kHz and 40 kHz.

That’s one of the problems that complicates building a robust infrared remote
control. The biggest problem is that vendors have invented countless incom-
patible protocols. They all use different frequencies, and they all interpret
data differently. Some interpret “light on” as a 1 bit, while others treat it as
0, and they all define their own commands that have different lengths. So, to
work successfully with different remote control protocols, you need to know
how to obtain all of these properties for a specific remote control.

To get this information, we’ll take a pragmatic approach. In the next two
sections, you’ll learn how to read infrared signals from a commercial-grade
remote control, and you’ll also learn how to reproduce them.

Grabbing Remote Control Codes
Because remote controls from different vendors rarely use the same protocol
or even the same commands, before we start sending remote control codes
ourselves, we should know what we have to send to achieve a certain result.
We have to get as much information as possible about the remote control
we’d like to emulate.

We have two options for obtaining remote control codes for a specific device:
we could use a remote control database on the Internet, such as the Linux
Infrared Remote Control project,1 or we could use an infrared receiver to read
them directly from our device’s remote. We’ll choose the latter approach
because you can learn a lot from it.

Infrared receivers are fairly complex on the inside, but they’re
easy to use. They automatically observe the infrared light
spectrum at a certain frequency (usually between 36 kHz
and 40 kHz), and they report their observations using a single pin. So, when

1. http://www.lirc.org/

report erratum • discuss

Grabbing Remote Control Codes • 203

http://www.lirc.org/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

you’re using such a receiver, you don’t have to deal with all the complicated
transmission details. You can focus on reading and interpreting the incoming
signals.

The image that follows shows how to connect a TSOP38238 receiver to an
Arduino. It’s cheap, it’s easy to use, and it works at a frequency of 38 kHz,
so it detects signals from a broad range of devices. Connect its ground con-
nector to one of the Arduino’s GND pins, the power supply to the Arduino’s
5V pin, and the signal pin to digital pin 11.

You might be tempted to write a sketch that reads and outputs all incoming
data on pin 11, and I won’t stop you. Call digitalRead in the loop method and
output the results to the serial port. Point your TV set’s remote to the receiver
and see what happens.

You’ll probably have a hard time understanding the data you see. The problem
is that decoding the incoming data isn’t easy. Even if the receiver has already
processed the data, it still has to be transformed and interpreted according
to some complicated rules. Also, Arduino’s digitalRead method is too slow to
deal with all types of incoming signals. You have to directly access the micro-
controller to get the best results.

Fortunately, we don’t have to do this ourselves, because the IRremote library2

hides the nasty details. It supports the most popular infrared protocols, and
it can both receive and send data.

After you’ve downloaded and extracted the zip file,3 rename the resulting
directory to IRremote. Copy the directory IRremote to either ~/Docu-
ments/Arduino/libraries (on a Mac) or My Documents\Arduino\libraries (on a Windows box).
Then restart your IDE.

2. https://github.com/shirriff/Arduino-IRremote
3. https://github.com/shirriff/Arduino-IRremote/archive/master.zip

Chapter 12. Creating Your Own Universal Remote Control • 204

report erratum • discuss

https://github.com/shirriff/Arduino-IRremote
https://github.com/shirriff/Arduino-IRremote/archive/master.zip
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

If you’re using Arduino 1.6.0, IRremote collides with one of the Arduino IDE’s
new standard libraries named RobotIRremote. In this case you have to delete
RobotIRremote to make this chapter’s examples run. On a Mac you need to delete
/Applications/Arduino.app/Contents/Resources/Java/libraries/RobotIRremote/. On aWindowsmachine,
it's something like C:\Program Files (x86)\Arduino\libraries\RobotIRremote‘.

With the following sketch, you can then decode incoming infrared signals, if
the IRremote library supports their encoding:

RemoteControl/InfraredDumper/InfraredDumper.ino
#include <IRremote.h>Line 1

-

const unsigned int IR_RECEIVER_PIN = 11;-

const unsigned int BAUD_RATE = 9600;-

5

IRrecv ir_receiver(IR_RECEIVER_PIN);-

decode_results results;-

-

void setup() {-

Serial.begin(BAUD_RATE);10

ir_receiver.enableIRIn();-

}-

-

void dump(const decode_results* results) {-

const int protocol = results->decode_type;15

Serial.print("Protocol: ");-

if (protocol == UNKNOWN) {-

Serial.println("not recognized.");-

} else if (protocol == NEC) {-

Serial.println("NEC");20

} else if (protocol == SONY) {-

Serial.println("SONY");-

} else if (protocol == RC5) {-

Serial.println("RC5");-

} else if (protocol == RC6) {25

Serial.println("RC6");-

} else if (protocol == DISH) {-

Serial.println("DISH");-

} else if (protocol == SHARP) {-

Serial.println("SHARP");30

} else if (protocol == PANASONIC) {-

Serial.print("PANASONIC (");-

Serial.print("Address: ");-

Serial.print(results->panasonicAddress, HEX);-

Serial.println(")");35

} else if (protocol == JVC) {-

Serial.println("JVC");-

} else if (protocol == SANYO) {-

Serial.println("SANYO");-

} else if (protocol == MITSUBISHI) {40

report erratum • discuss

Grabbing Remote Control Codes • 205

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredDumper/InfraredDumper.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Serial.println("MITSUBISHI");-

} else if (protocol == SAMSUNG) {-

Serial.println("SAMSUNG");-

} else if (protocol == LG) {-

Serial.println("LG");45

}-

Serial.print("Value: ");-

Serial.print(results->value, HEX);-

Serial.print(" (");-

Serial.print(results->bits, DEC);50

Serial.println(" bits)");-

}-

-

void loop() {-

if (ir_receiver.decode(&results)) {55

dump(&results);-

ir_receiver.resume();-

}-

}-

First, we define an IRrecv object named ir_receiver that reads from pin 11. We
also define a decode_result object that we’ll use to store the attributes of
incoming infrared signals. In setup, we initialize the serial port, and we initialize
the infrared receiver by calling enableIRIn.

Then we define the dump method that formats and outputs the content of a
decode_result object to the serial port. decode_result is one of the core data types
of the IRremote library. It encapsulates data such as the protocol type, the
length of a command code, and the command code itself. In line 15, we read
the protocol type that has been used to encode the incoming signal. When
we receive a new signal, we output all of these attributes to the serial port.

The loop method is simple. We call decode to check whether we’ve received a
new signal. If yes, we call dump to output it to the serial port, and then we call
resume to wait for the next signal.

Compile and upload the sketch to your Arduino. Start the serial monitor and
point a remote control at the receiver. Push some of the remote’s buttons and
see what happens. Figure 30, Capture the IR codes of a Samsung remote, on
page 207 shows happens when you point a recent Samsung remote at the
receiver and press menu, up, down, left, right, and play.

If you’re using a remote from a different vendor, your results will differ.
Nearly all modern remotes send a unique 32-bit value for each command,
but there are exceptions, too. For example, Panasonic devices send not only
a command value, but also an address. Also, remote control behavior differs
regarding command repetition. If you press and hold a key on a Samsung

Chapter 12. Creating Your Own Universal Remote Control • 206

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

remote, it will send the same code over and over again as long as you press
the key. An Apple remote will send the key’s command code only once, and
after that it sends the code 0xffffffff as long as you press the key.

Figure 30—Capture the IR codes of a Samsung remote

After you’ve grabbed a remote’s control codes, you can use them to build your
own remote. You’ll learn how to do that in the next section.

Cloning a Remote
As soon as you know the protocol and the
command codes a remote uses, you can
clone it. You need only an infrared LED
that doesn’t differ much from the LEDs
we’ve used before. The only difference is
that it emits “invisible” light. The figure
shows how to connect it to pin 3 of an
Arduino. (The library we’re using in this
section expects the infrared LED to be
connected to pin 3.) Note that you can’t
use an LED without a resistor. (See Cur-
rent, Voltage, and Resistance, on page 239,
to learn more about it.)

We could try to generate the infrared sig-
nals ourselves, but that’d be tedious and
error-prone. It’s better to use the existing
implementation in the IRremote library.
We’ll use it to create our own TvRemote
class that encapsulates all of the gory protocol details. Here’s the class:

report erratum • discuss

Cloning a Remote • 207

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

RemoteControl/TvRemote/TvRemote.ino
#include <IRremote.h>Line 1

-

class TvRemote {-

-

enum {5

CMD_LEN = 32, GUIDE = 0xE0E0F20D,-

POWER = 0xE0E040BF, TOOLS = 0xE0E0D22D,-

SOURCE = 0xE0E0807F, INFO = 0xE0E0F807,-

HDMI = 0xE0E0D12E, OPTIONS = 0xE0E016E9,-

ONE = 0xE0E020DF, UP_K = 0xE0E006F9,10

TWO = 0xE0E0A05F, LEFT_K = 0xE0E0A659,-

THREE = 0xE0E0609F, RIGHT_K = 0xE0E046B9,-

FOUR = 0xE0E010EF, DOWN_K = 0xE0E08679,-

FIVE = 0xE0E0906F, RETURN = 0xE0E01AE5,-

SIX = 0xE0E050AF, EXIT = 0xE0E0B44B,15

SEVEN = 0xE0E030CF, A = 0xE0E036C9,-

EIGHT = 0xE0E0B04F, B = 0xE0E028D7,-

NINE = 0xE0E0708F, C = 0xE0E0A857,-

TXT = 0xE0E034CB, D = 0xE0E06897,-

ZERO = 0xE0E08877, PIP = 0xE0E004FB,20

PRE_CH = 0xE0E0C837, SEARCH = 0xE0E0CE31,-

VOL_UP = 0xE0E0E01F, DUAL = 0xE0E000FF,-

VOL_DOWN = 0xE0E0D02F, USB_HUB = 0xE0E025DA,-

MUTE = 0xE0E0F00F, P_SIZE = 0xE0E07C83,-

CH_LIST = 0xE0E0D629, SUBTITLE = 0xE0E0A45B,25

PROG_UP = 0xE0E048B7, REWIND = 0xE0E0A25D,-

PROG_DOWN = 0xE0E008F7, PAUSE = 0xE0E052AD,-

MENU = 0xE0E058A7, FORWARD = 0xE0E012ED,-

SMART_TV = 0xE0E09E61, RECORD = 0xE0E0926D,-

PLAY = 0xE0E0E21D, STOP = 0xE0E0629D30

};-

-

IRsend tv;-

-

void send_command(const long command) {35

tv.sendSAMSUNG(command, CMD_LEN);-

}-

-

public:-

40

void guide() { send_command(GUIDE); }-

void power() { send_command(POWER); }-

void tools() { send_command(TOOLS); }-

void source() { send_command(SOURCE); }-

void info() { send_command(INFO); }45

void hdmi() { send_command(HDMI); }-

void zero() { send_command(ZERO); }-

void one() { send_command(ONE); }-

void two() { send_command(TWO); }-

Chapter 12. Creating Your Own Universal Remote Control • 208

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemote/TvRemote.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void three() { send_command(THREE); }50

void four() { send_command(FOUR); }-

void five() { send_command(FIVE); }-

void six() { send_command(SIX); }-

void seven() { send_command(SEVEN); }-

void eight() { send_command(EIGHT); }55

void nine() { send_command(NINE); }-

void up() { send_command(UP_K); }-

void left() { send_command(LEFT_K); }-

void right() { send_command(RIGHT_K); }-

void down() { send_command(DOWN_K); }60

void ret() { send_command(RETURN); }-

void exit() { send_command(EXIT); }-

void a() { send_command(A); }-

void b() { send_command(B); }-

void c() { send_command(C); }65

void d() { send_command(D); }-

void txt() { send_command(TXT); }-

void pip() { send_command(PIP); }-

void pre_ch() { send_command(PRE_CH); }-

void search() { send_command(SEARCH); }70

void vol_up() { send_command(VOL_UP); }-

void vol_down() { send_command(VOL_DOWN); }-

void dual() { send_command(DUAL); }-

void usb_hub() { send_command(USB_HUB); }-

void mute() { send_command(MUTE); }75

void p_size() { send_command(P_SIZE); }-

void ch_list() { send_command(CH_LIST); }-

void subtitle() { send_command(SUBTITLE); }-

void prog_up() { send_command(PROG_UP); }-

void prog_down() { send_command(PROG_DOWN); }80

void pause() { send_command(PAUSE); }-

void rewind() { send_command(REWIND); }-

void forward() { send_command(FORWARD); }-

void menu() { send_command(MENU); }-

void smart_tv() { send_command(SMART_TV); }85

void record() { send_command(RECORD); }-

void play() { send_command(PLAY); }-

void stop() { send_command(STOP); }-

};-

The code starts with an enumeration that contains all the constants we need:
the length of each control code (CMD_LEN) and the control codes themselves.
There’s one entry in the enumeration for each key on our remote control.

In line 33, we define an IRsend object named tv that we’ll use to send commands
using the send_command method. send_command uses IRsend’s sendSAMSUNG method
because in this example we’re using a Samsung remote control. If you’re using
a device from Sony or Sharp, you have to adjust the code accordingly. Note

report erratum • discuss

Cloning a Remote • 209

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

that at the time of this writing, the IRremote library is able to decode remote
controls from Sanyo, Mitsubishi, and LG, but it doesn’t support sending
commands to devices from these manufacturers.

After we’ve established the basis, we can implement all commands with a
single function call, so implementing power, menu, play, and so on is a piece of
cake.

Using the TvRemote class is easy, too. In the following sketch, we use it to
control a Samsung TV from the Arduino’s serial monitor:

RemoteControl/TvRemote/TvRemote.ino
const unsigned int BAUD_RATE = 9600;Line 1

-

TvRemote tv;-

String command = "";-

boolean input_available = false;5

-

void setup() {-

Serial.begin(BAUD_RATE);-

}-

10

void serialEvent() {-

while (Serial.available()) {-

const char c = Serial.read();-

if (c == '\n')-

input_available = true;15

else-

command += c;-

}-

}-

20

void loop() {-

if (input_available) {-

Serial.print("Received command: ");-

Serial.println(command);-

if (command == "guide") tv.guide();25

else if (command == "power") tv.power();-

else if (command == "tools") tv.tools();-

else if (command == "source") tv.source();-

else if (command == "info") tv.info();-

else if (command == "hdmi") tv.hdmi();30

else if (command == "zero") tv.zero();-

else if (command == "one") tv.one();-

else if (command == "two") tv.two();-

else if (command == "three") tv.three();-

else if (command == "four") tv.four();35

else if (command == "five") tv.five();-

else if (command == "six") tv.six();-

else if (command == "seven") tv.seven();-

Chapter 12. Creating Your Own Universal Remote Control • 210

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemote/TvRemote.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

else if (command == "eight") tv.eight();-

else if (command == "nine") tv.nine();40

else if (command == "up") tv.up();-

else if (command == "left") tv.left();-

else if (command == "right") tv.right();-

else if (command == "down") tv.down();-

else if (command == "ret") tv.ret();45

else if (command == "exit") tv.exit();-

else if (command == "a") tv.a();-

else if (command == "b") tv.b();-

else if (command == "c") tv.c();-

else if (command == "d") tv.d();50

else if (command == "txt") tv.txt();-

else if (command == "pip") tv.pip();-

else if (command == "pre_ch") tv.pre_ch();-

else if (command == "search") tv.search();-

else if (command == "vol_up") tv.vol_up();55

else if (command == "vol_down") tv.vol_down();-

else if (command == "dual") tv.dual();-

else if (command == "usb_hub") tv.usb_hub();-

else if (command == "mute") tv.mute();-

else if (command == "p_size") tv.p_size();60

else if (command == "ch_list") tv.ch_list();-

else if (command == "subtitle") tv.subtitle();-

else if (command == "prog_up") tv.prog_up();-

else if (command == "prog_down") tv.prog_down();-

else if (command == "pause") tv.pause();65

else if (command == "rewind") tv.rewind();-

else if (command == "forward") tv.forward();-

else if (command == "menu") tv.menu();-

else if (command == "smart_tv") tv.smart_tv();-

else if (command == "record") tv.record();70

else if (command == "play") tv.play();-

else if (command == "stop") tv.stop();-

else Serial.println("Command is unknown.");-

-

command = "";75

input_available = false;-

}-

}-

In lines 3 to 5, we define a global TvRemote object named tv, a string named
command that holds the current command, and a Boolean flag named
input_available that is true when the sketch has received a new command. As
usual, we initialize the serial port in the setup function.

The Arduino calls the serialEvent function defined in line 11 when new data
arrives at the serial port. (Learn more about serialEvent in Serial Communication
Using Various Languages, on page 255.) We append that data to the command

report erratum • discuss

Cloning a Remote • 211

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

variable, and when we encounter a newline character, we also set the
input_available flag to true. This way, the loop function can determine whether a
new command has been received and which command it was.

In loop, we wait for commands. When a new command arrives, we check
whether it’s supported. If it is supported, we send the corresponding control
code. Otherwise, we print an error message.

Compile and upload the sketch, and you can control the TV of your choice—a
Samsung TV, in this example—using any serial monitor, which is quite cool
already. The interface is still awkward for less geeky people, so in the next
section, you’ll learn how to create a more user-friendly interface.

Controlling Infrared Devices Remotely with Your Browser
We’ve already created several projects that you can control using a serial
monitor. For programmers, that’s a nice and convenient interface, but as
soon as you want to present your projects to your nontechnical friends, you’d
better have something more user-friendly and colorful.

Now we’ll implement a Google Chrome app to create a nice user interface for
our cloned remote control. Before you proceed, you should read Appendix 4,
Controlling the Arduino with a Browser, on page 267, if you haven’t already.

The Chrome app’s manifest.json file contains no surprises. It defines the appli-
cation name and grants the application access to the serial port.

RemoteControl/TvRemoteUI/manifest.json
{

"manifest_version": 2,
"name": "TV Remote Emulator",
"version": "1",
"permissions": ["serial"],
"app": {

"background": {
"scripts": ["background.js"]

}
},
"minimum_chrome_version": "33"

}

Chapter 12. Creating Your Own Universal Remote Control • 212

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemoteUI/manifest.json
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The same is true for the application’s background.js file. It renders the following
HTML file when the application is launched.

RemoteControl/TvRemoteUI/main.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8"/>
<link rel="stylesheet" type="text/css" href="css/style.css"/>
<title>TV Remote Emulator</title>

</head>
<body>

<div id="main">
<div>

<button id="power" type="button">Power</button>
<button id="hdmi" type="button">HDMI</button>
<button id="source" type="button">Source</button>

</div>
<div>

<button id="one" type="button">1</button>
<button id="two" type="button">2</button>
<button id="three" type="button">3</button>

</div>
<div>

<button id="four" type="button">4</button>
<button id="five" type="button">5</button>
<button id="six" type="button">6</button>

</div>
<div>

<button id="seven" type="button">7</button>
<button id="eight" type="button">8</button>
<button id="nine" type="button">9</button>

</div>
<div>

<button id="txt" type="button">TXT</button>
<button id="zero" type="button">0</button>
<button id="pre_ch" type="button">PRE-CH</button>

</div>
<div>

<button id="vol_up" type="button">V Up</button>
<button id="mute" type="button">Mute</button>
<button id="prog_up" type="button">Ch Up</button>

</div>
<div>

<button id="vol_down" type="button">V Down</button>
<button id="ch_list" type="button">CH LIST</button>
<button id="prog_down" type="button">Ch Down</button>

</div>
</div>
<script src="js/jquery-1.11.1.min.js"></script>

report erratum • discuss

Controlling Infrared Devices Remotely with Your Browser • 213

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemoteUI/main.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

<script src="js/serial_device.js"></script>
<script src="js/remote.js"></script>

</body>
</html>

This HTML document defines seven rows that contain three buttons each.
Also, it loads several JavaScript files. It loads the jQuery library and the Seri-
alDevice class we defined in Writing a SerialDevice Class, on page 274. In addition,
it loads a file named remote.js that defines what happens when a user clicks a
button on our virtual remote.

RemoteControl/TvRemoteUI/js/remote.js
$(function() {Line 1

var BAUD_RATE = 9600;-

var remote = new SerialDevice("/dev/tty.usbmodem24311", BAUD_RATE);-

-

remote.onConnect.addListener(function() {5

console.log("Connected to: " + remote.path);-

});-

-

remote.connect();-

10

$("[type=button]").on("click", function(event){-

var buttonType = $(event.currentTarget).attr("id");-

console.log("Button pressed: " + buttonType);-

remote.send(buttonType + "\n");-

});15

});-

In remote.js, we use jQuery’s $ function in the first line to make sure all Java-
Script code gets executed after the whole HTML page has been loaded. Then
we define a new SerialDevice instance named remote and connect to it. Make
sure you’re using the right serial port name here.

The rest of the code attaches callback functions to all of the buttons we’ve
defined. We use jQuery’s $ function to select all elements having the type
button. Then we call the on function for each button element and pass it the
parameter click to add a callback function that gets called when the button
gets clicked.

In the callback function for click events, we use the event’s currentTarget prop-
erty in line 12 to determine which button has actually been clicked. We read
the button’s ID attribute and use it as the command we send to the Arduino.
If the user clicks the button with the ID one, the program will send the com-
mand one to the Arduino. The Arduino will then send the corresponding code
via infrared. Using a consistent naming scheme for the button elements in
the HTML page has really paid off. To add another button, you only have to

Chapter 12. Creating Your Own Universal Remote Control • 214

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemoteUI/js/remote.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

modify the HTML page. Add a new button element and set its ID attribute to
the name of the Arduino command that emits the corresponding remote
control code.

To align the buttons of our virtual remote control and to make the Chrome
app look nice, we use the following stylesheet:

RemoteControl/TvRemoteUI/css/style.css
#main {

width: 18em;
margin-left: auto;
margin-right: auto;

}

button {
width: 6em;

}

The stylesheet mainly ensures that all buttons have the same width. Run the
Chrome app, and you’ll see something like the following figure:

Upload the sketch from Cloning a Remote, on page 207, to your Arduino and
start the Chrome app. Click any button to perform the corresponding action.
That’s an interface even your grandma could use, isn’t it?

You still need to connect the Arduino to your computer’s serial port to control
it with a web browser. In the next section, you’ll learn how to overcome this
and control an Arduino without a serial connection.

report erratum • discuss

Controlling Infrared Devices Remotely with Your Browser • 215

http://media.pragprog.com/titles/msard2/code/RemoteControl/TvRemoteUI/css/style.css
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Building an Infrared Proxy
All of our previous remote control approaches have one major drawback: they
all depend on a serial connection to a PC. In this section, you’ll learn how to
replace this connection with an Ethernet connection, so you no longer need
a PC but only Internet access. You will directly plug your Ethernet cable into
an Ethernet shield connected to the Arduino, so it is available on your network.
Then you’ll connect an infrared LED to the Ethernet shield using the same
circuit as shown in Cloning a Remote, on page 207.

You don’t necessarily have to use your PC’s web browser to access the Arduino.
You could also use the browser on your PlayStation Portable or on your
iPhone. Yes, you can now control your TV set using your game consoles or
your smartphone. Oh, and you could replace the Ethernet shield with a Wi-
Fi shield so you don’t have to connect your Arduino physically to your network
router.

Before we dive into the code, we should do a little planning ahead and make
clear what we’d like to achieve. We’ll build an infrared proxy—a device that
receives commands via Ethernet and turns them into infrared signals. (See
the image on page 212.) To make it easy to integrate the device into a network,
we’ll make it accessible via HTTP. This way, we can control it using a regular
web browser.

We’ll implement only a very small portion of the HTTP standard on the
Arduino—we’ll support only a certain URL scheme. The URLs we’ll support
look as follows:

http://«arduino-ip»/«protocol-name»/«command-length»/«command-code»
We’ll replace «arduino-ip» with the IP address of the Arduino’s Ethernet shield.
The element «protocol-name» can be one of the supported protocols (“NEC,”
“SONY,” “RC5,” “RC6,” “DISH,” “JVC,” or “SAMSUNG”). «command-length»
specifies the length of the command code in bits, and «command-code» con-
tains the command code itself as a hexadecimal number.

Note that the sketch currently doesn’t support Panasonic devices because
they don’t fit our URL scheme.

Let’s assume we’d like to send the code for the power key on a Samsung
remote, and our Arduino has the IP address 192.168.2.42. Then we’d have
to point our web browser to the following URL:

http://192.168.2.42/SAMSUNG/32/E0E040BF

Chapter 12. Creating Your Own Universal Remote Control • 216

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In this case, the protocol name is SAMSUNG, the length of the command code
is 32 bits, and the command code is E0E040BF (the hexadecimal number we
grabbed in Grabbing Remote Control Codes, on page 203).

We already used the Arduino as a web client in Chapter 10, Networking with
Arduino, on page 163, but now we need to turn it into a web server. The server
waits for new HTTP requests like the one shown previously, parses the URL,
and emits the corresponding infrared signal.

We’ll hide all of these details in a class named InfraredProxy, and to keep things
as easy and as concise as possible, we’ll make use of both the Ethernet and
the IRremote library. The InfraredProxy class is still one of the book’s most
sophisticated examples of Arduino code. Here’s its interface:

RemoteControl/InfraredProxy/infrared_proxy.h
#include <SPI.h>
#include <Ethernet.h>
#include <IRremote.h>

class InfraredProxy {
private:
IRsend _infrared_sender;

void read_line(EthernetClient& client, char* buffer, const int buffer_length);
bool send_ir_data(const char* protocol, const int bits, const long value);
bool handle_command(char* line);

public:
void receive_from_server(EthernetServer server);

};

After including all libraries needed, we declare the InfraredProxy class. We define
a member variable named _infrared_sender that stores an IRsend object we need
to emit infrared control codes. Then we declare three private helper methods
and the receive_from_server method, which is the only public method of the
InfraredProxy class.

Let’s have a look at the implementation of all methods. We’ll start with read_line:

report erratum • discuss

Building an Infrared Proxy • 217

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/infrared_proxy.h
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

RemoteControl/InfraredProxy/infrared_proxy.cpp
void InfraredProxy::read_line(

EthernetClient& client, char* buffer, const int buffer_length)
{

int buffer_pos = 0;
while (client.available() && (buffer_pos < buffer_length - 1)) {

const char c = client.read();
if (c == '\n')
break;

if (c != '\r')
buffer[buffer_pos++] = c;

}
buffer[buffer_pos] = '\0';

}

read_line reads one line of data sent by a client. A line ends either with a newline
character (\n) or with a carriage return character followed by a newline
character (\r\n). read_line expects the EthernetClient object to read data from, a
character buffer to store the data in (buffer), and the maximum length of the
character buffer (buffer_length). The method ignores all newline and carriage
return characters, and it sets the line’s last character to \0 so the buffer to
be filled will always be a null-terminated string.

send_ir_data is responsible for sending infrared commands:

RemoteControl/InfraredProxy/infrared_proxy.cpp
bool InfraredProxy::send_ir_data(

const char* protocol, const int bits, const long value)
{
bool result = true;
if (!strcasecmp(protocol, "NEC"))

_infrared_sender.sendNEC(value, bits);
else if (!strcasecmp(protocol, "SONY"))

_infrared_sender.sendSony(value, bits);
else if (!strcasecmp(protocol, "RC5"))

_infrared_sender.sendRC5(value, bits);
else if (!strcasecmp(protocol, "RC6"))

_infrared_sender.sendRC6(value, bits);
else if (!strcasecmp(protocol, "DISH"))

_infrared_sender.sendDISH(value, bits);
else if (!strcasecmp(protocol, "SHARP"))

_infrared_sender.sendSharp(value, bits);
else if (!strcasecmp(protocol, "JVC"))

_infrared_sender.sendJVC(value, bits, 0);
else if (!strcasecmp(protocol, "SAMSUNG"))

_infrared_sender.sendSAMSUNG(value, bits);
else

result = false;
return result;

}

Chapter 12. Creating Your Own Universal Remote Control • 218

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/infrared_proxy.cpp
http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/infrared_proxy.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

It emits an infrared command specified by a protocol type (protocol), the length
of the code measured in bits (bits), and the code value to be sent (value).
Depending on the name of the protocol, the method delegates all the real work
to our IRsend instance.

handle_command implements one of the most difficult aspects of our InfraredProxy—it
parses the URL addressed by the HTTP request:

RemoteControl/InfraredProxy/infrared_proxy.cpp
bool InfraredProxy::handle_command(char* line) {Line 1

strsep(&line, " ");-

char* path = strsep(&line, " ");-

-

char* args[3];5

for (char** ap = args; (*ap = strsep(&path, "/")) != NULL;)-

if (**ap != '\0')-

if (++ap >= &args[3])-

break;-

const int bits = atoi(args[1]);10

const long value = strtoul(args[2], NULL, 16);-

return send_ir_data(args[0], bits, value);-

}-

To understand what this method does, you have to understand how HTTP
requests work. If you wander up to your web browser’s address bar and enter
a URL like http://192.168.2.42/SAMSUNG/32/E0E040BF, your browser will send an HTTP
request that looks like this:

GET /SAMSUNG/32/E0E040BF HTTP/1.1
host: 192.168.2.42

The first line is a GET request, and handle_command expects a string containing
such a request. It extracts all the information encoded in the given path
(/SAMSUNG/32/E0E040BF) and uses it to emit an infrared signal. Parsing the
information is tricky, but using C’s strsep function, it’s not too difficult. strsep
separates strings delimited by certain characters. It expects a string containing
several separated strings and a string containing all delimiters. To get the
separated strings, you have to call strsep repeatedly until it returns NULL.
That is, whenever you invoke strsep, it returns the next string or NULL.

We use strsep in two different contexts. In the first case, we extract the path
from the GET command: we strip off the string “GET” and the string “HTTP/1.1.”
Both are separated from the path by a blank character. In line 2, we call strsep
to remove the “GET” at the beginning of the string. We don’t even store the
function’s return value, because we know it’s “GET” anyway.

report erratum • discuss

Building an Infrared Proxy • 219

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/infrared_proxy.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In line 3, we read the next separated string, which contains the actual path.
If you were to pass the request GET http://192.168.2.42/SAMSUNG/32/E0E040BF HTTP/1.1
to handle_command, path would contain /SAMSUNG/32/E0E040BF now.

At this stage, we have a string consisting of three strings separated by a slash
character (/). It’s time to use strsep again, and if you understand what happens
in lines 6 to 9, then you can call yourself familiar with both C and the strsep
function. In the end, the array args contains all three path elements. We can
pass the protocol name directly to send_ir_data, but we have to turn the bit
length and the value of the code into int and long values before. For the conver-
sion, we use the atoi and strtoul functions. We use the latter one to convert a
hexadecimal value to a decimal value.

Now we have defined all helper methods we need, and we only have to
implement the only public method of the InfraredProxy class:

RemoteControl/InfraredProxy/infrared_proxy.cpp
void InfraredProxy::receive_from_server(EthernetServer server) {Line 1

const int MAX_LINE = 256;-

char line[MAX_LINE];-

EthernetClient client = server.available();-

if (client) {5

while (client.connected()) {-

if (client.available()) {-

read_line(client, line, MAX_LINE);-

Serial.println(line);-

if (line[0] == 'G' && line[1] == 'E' && line[2] == 'T')10

handle_command(line);-

if (!strcmp(line, "")) {-

client.println("HTTP/1.1 200 OK\n");-

break;-

}15

}-

}-

delay(1);-

client.stop();-

}20

}-

The receive_from_server method finally implements the core logic of our InfraredProxy
class. It expects an instance of the EthernetServer class that is defined in the
Ethernet library. It waits for a client to connect using EthernetServer’s available
method in line 4. Whenever the server is connected to a client, it checks
whether the client has new data using EthernetClient’s available method in line 7.

receive_from_server reads the data sent by the client line by line, calling read_line.
It prints each line to the serial port for debugging purposes, and for every line

Chapter 12. Creating Your Own Universal Remote Control • 220

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/infrared_proxy.cpp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

it checks whether the line begins with GET. If yes, it calls handle_command; oth-
erwise, it checks whether the line is empty, because all HTTP messages are
terminated by an empty line. In this case, receive_from_server sends back an
“OK” response, waits for a millisecond to give the client some time to process
the response, and then disconnects from the client by calling stop.

Admittedly, that was a lot of code, but the effort was well worth it. Using the
InfraredProxy is really simple now:

RemoteControl/InfraredProxy/InfraredProxy.ino
#include <SPI.h>
#include <Ethernet.h>
#include <IRremote.h>
#include "infrared_proxy.h"

const unsigned int PROXY_PORT = 80;
const unsigned int BAUD_RATE = 9600;

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 2, 42);

EthernetServer server(PROXY_PORT);
InfraredProxy ir_proxy;

void setup() {
Serial.begin(BAUD_RATE);
Ethernet.begin(mac, ip);
server.begin();

}

void loop() {
ir_proxy.receive_from_server(server);

}

As usual, we define the MAC and IP addresses we’d like to use. Then we define
an EthernetServer object, passing it the port it should listen to, 80 (the standard
HTTP port). Also, we initialize a new InfraredProxy object.

In the setup method, we initialize the serial port for debugging purposes. We
also initialize the Ethernet shield, and we call EthernetServer’s begin method to
start our server’s listener. In loop, we call only the InfraredProxy’s
receive_from_server method, passing it our EthernetServer instance.

Let’s finally test the code! Attach the Ethernet shield to your Arduino, and
attach the infrared LED circuit to the shield. Configure the MAC and IP
addresses, compile the InfraredProxy sketch, and upload it to your Arduino.
Point your web browser to http://192.168.2.42/SAMSUNG/32/E0E040BF (adjust the URL
to your local settings!) and see what happens to your TV set or whatever

report erratum • discuss

Building an Infrared Proxy • 221

http://media.pragprog.com/titles/msard2/code/RemoteControl/InfraredProxy/InfraredProxy.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

device you want to control. In the following figure, you can see a typical output
of the infrared proxy on the serial monitor. Note that the web browser sends
not only one but two requests. The second one is for downloading the website’s
Favicon,4 and we can safely ignore it.

Although we’ve used only a minimal amount of hardware (a cheap and simple
infrared LED), this chapter’s projects are very useful and fairly sophisticated,
at least from a software development point of view. Now not only can we
control any device that understands infrared signals, but we also can do it
using a computer’s serial port or even a web browser.

Also, you no longer need to connect the Arduino to your computer’s USB port.
The infrared proxy needs only the USB port to get some power. Plug an AC
adapter into your Arduino, and you can get rid of your USB cable.

For the first time, we’ve controlled real-world devices using an Arduino. We’ll
continue to do so in the next chapter, where you’ll learn how to control motors.

Control Everything

All of the projects in this chapter are based on devices you can control already using
an infrared remote control. But you can also add an infrared receiver to existing
devices or build completely new gadgets that come with an infrared receiver.

In principle, you could control your refrigerator or your microwave oven with a remote
control. But have you ever thought about a remote-controlled lawnmower?a I bet not.

a. http://www.instructables.com/id/Arduino-RC-Lawnmower/

4. http://en.wikipedia.org/wiki/Favicon

Chapter 12. Creating Your Own Universal Remote Control • 222

report erratum • discuss

http://www.instructables.com/id/Arduino-RC-Lawnmower/
http://en.wikipedia.org/wiki/Favicon
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What If It Doesn’t Work?
If you cannot make this chapter’s code run, you should download the code
from the book’s website and try to run it. Make sure you’re using the correct
serial port in the code/RemoteControl/TvRemoteUI/js/remote.js file.

In this chapter, we mainly used LEDs and an Ethernet shield, so all of the
advice from Chapter 3, Building Binary Dice, on page 39, and Chapter 10,
Networking with Arduino, on page 163, also applies to this chapter.

In addition, you have to be careful of more things. The distance between an
infrared LED and its receiver is important. To be on the safe side, you should
position the LED near the receiver. It should also be placed right in front of
the receiver, and you should make sure there’s not too much ambient light
that might disturb the infrared signal.

For debugging purposes, it’s useful to replace an invisible infrared LED with
a regular LED from time to time. This way, you can see whether your circuit
works in principle.

If you’re trying to control a Mac, you should unpair any other remote controls
in the Security area of the Mac’s System Preferences window.

Finally, you might be using a device that uses a protocol that isn’t supported
by the IRremote library. In this case, you have to add it. This can be tricky,
but IRremote is open source, so at least it’s possible.

Exercises
• Build an emulator for a remote control you find in your household. Make

its commands available via serial port and via Ethernet.

• Instead of controlling the Arduino via a serial monitor or web browser,
control it using a Nintendo Nunchuk. You could move the analog stick
up and down to control your TV set’s volume, and you could move it left
or right to change the channel.

• Design a real universal remote control based on an Arduino. Look for a
touchscreen, a button pad, an SD card shield, and a Bluetooth module.
I bet you didn’t think you could build a device like this—but you know
everything you need to do it now.

report erratum • discuss

What If It Doesn’t Work? • 223

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

CHAPTER 13

Controlling Motors with Arduino
So far, we’ve created projects that have had an impact on the real world. We’ve
made LEDs shine, and we’ve controlled devices using infrared light. In this
chapter, we’ll create an even more intense experience: we’ll control motors
that will actually move things. We won’t go so far as to build a full-blown
autonomous robot, but we’ll create a small device that does something useful
and funny.

First, though, you’ll learn about the basics of different motor types and their
pros and cons. Today you can choose from a variety of motor types for your
projects, and this chapter starts with a brief description of their differences.

We’ll concentrate on servo motors, because you can use them for a wide range
of projects and they’re cheap and easy to use. You’ll learn to use the Arduino
servo library and to control a servo using the serial port.

Based on these first steps, we’ll then build a more sophisticated project. It’s
a blaming device that uses nearly the same hardware as the first project in
the chapter but more elaborate software. You’ll probably find many applica-
tions for it in your office!

What You Need

1. A servo motor, such as the
Hitec HS-322HD

2. Some wires
3. A TMP36 temperature sensor (it’s optional, and you need it only for the

exercises)
4. An Arduino board, such as the Uno, Duemilanove, or Diecimila
5. A USB cable to connect the Arduino to your computer

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Introducing Motors
Depending on your project’s needs, you can choose from a variety of motors.
For hobby electronics, you’ll usually use DC motors, servo motors, or stepper
motors. (In the following figure, you see a few different types of motors.) They
differ mainly in speed, precision of control, power consumption, reliability,
and price.

Figure 31—Motor types from left to right:
standard servo, continuous rotation servo, stepper, DC motor

DC motors are fast and efficient, so you can use them in drill machines,
electric bicycles, or remote-control cars. You can control DC motors easily,
because they have only two connectors. Connect one to a power supply and
the other to ground, and the motor will start to spin. Swap the connections,
and the motor will spin the other direction. Add more voltage, and the motor
will spin faster; decrease voltage, and it will spin slower.

DC motors aren’t a good choice if you need precise control. In such cases,
it’s better to use a stepper motor, which allows for precise control in a range
of 360 degrees. Although you might not have noticed it, you’re surrounded
by stepper motors. You hear them when your printer, scanner, or disk drive
is at work. Controlling stepper motors isn’t rocket science, but it is more
complicated than controlling DC motors and servos.

Servo motors are the most popular among hobbyists, because these motors
are a good compromise between DC motors and steppers. They’re affordable,
reliable, and easy to control. You can move standard servos only in a range

Chapter 13. Controlling Motors with Arduino • 226

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

of 180 degrees, but that’s sufficient for many applications. With continuous
rotation servos, you can increase the range to 360 degrees, but you lose the
ease of control.

In the next section, you’ll learn how easy it is to control standard servo motors
with an Arduino.

First Steps with a Servo Motor
The Arduino IDE comes with a library for controlling servo motors that we’ll
use for our first experiments. The following figure shows a basic circuit for
connecting an Arduino to a servo motor. Connect the ground wire to one of
the Arduino’s GND pins, connect power to the Arduino’s 5V pin, and connect
the control line to pin 9.

Please note that this works only for a 5V servo! Many cheap servos use 9V,
and in that case you need an external power supply, and you can no longer
connect the servo to the Arduino’s 5V pin. If you have a 9V servo, attach an
external power supply, such as an AC-to-DC adapter or a DC power supply,
to your Arduino’s power jack. Then connect the servo to the Vin pin.1 You
should also check the specifications of your Arduino board. For example, you
should not use an Arduino BT2 to control motors, because it can only handle
a maximum of 5.5V.

1. http://www.arduino.cc/playground/Learning/WhatAdapter
2. http://arduino.cc/en/Main/ArduinoBoardBluetooth

report erratum • discuss

First Steps with a Servo Motor • 227

http://www.arduino.cc/playground/Learning/WhatAdapter
http://arduino.cc/en/Main/ArduinoBoardBluetooth
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Here’s a picture of a servo motor connected to an Arduino using wires. You
can also use pin headers, but wires give you more flexibility.

Controlling servo motors is convenient, because you can set the motor’s shaft
to an angle between 0 and 180. With the following sketch, you can send a
degree value via the serial port and move the servo motor accordingly:

Motors/SerialServo/SerialServo.ino
#include <Servo.h>Line 1

-

const unsigned int MOTOR_PIN = 9;-

const unsigned int MOTOR_DELAY = 15;-

const unsigned int SERIAL_DELAY = 5;5

const unsigned int BAUD_RATE = 9600;-

-

Servo servo;-

-

void setup() {10

Serial.begin(BAUD_RATE);-

servo.attach(MOTOR_PIN);-

delay(MOTOR_DELAY);-

servo.write(1);-

delay(MOTOR_DELAY);15

}-

-

Chapter 13. Controlling Motors with Arduino • 228

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Motors/SerialServo/SerialServo.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

void loop() {-

const unsigned int MAX_ANGLE = 3;-

char degrees[MAX_ANGLE + 1];20

-

if (Serial.available()) {-

int i = 0;-

while (Serial.available() && i < MAX_ANGLE + 1) {-

const char c = Serial.read();25

if (c != -1 && c != '\n')-

degrees[i++] = c;-

delay(SERIAL_DELAY);-

}-

degrees[i] = 0;30

int value = atoi(degrees);-

if (value == 0)-

value = 1;-

Serial.print(value);-

Serial.println(" degrees.");35

servo.write(value);-

delay(MOTOR_DELAY);-

}-

}-

We include the Servo library, and in line 8, we define a new Servo object. In
the setup function, we initialize the serial port, and we attach the Servo object
to the pin we have defined in MOTOR_PIN. After that, we wait for 15 milliseconds
so the servo motor has enough time to process our command. Then we call
write to move the servo back to 1 degree. We could also move it back to 0
degrees, but some of the servos I’ve worked with make some annoying noise
in this position.

The main purpose of the loop function is to read new degree values from the
serial port. These values are in a range from 0 to 180, and we read them as
ASCII values. So, we need a string that can contain up to four characters.
(Remember, strings are null-terminated in C.) That’s why we declare the degrees
string with a length of four in line 20.

Then we wait for new data to arrive at the serial port and read it character
by character until no more data is available or until we have read enough.
We terminate the string with a zero byte and print the value we’ve read to the
serial port. Finally, we convert the string into an integer value using atoi and
pass it to the write method of the Servo object in line 36. Then we wait again
for the servo to do its job.

Compile and upload the sketch, then open the serial monitor. After the servo
has initialized, send some degree values, such as 45, 180, or 10. See how the

report erratum • discuss

First Steps with a Servo Motor • 229

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Arduino Arts

You can use the Arduino not just for gadgets or fun projects, but also in artistic ways.
Especially in the new-media art area, you will find many amazing projects built with
the Arduino. One of them is Anthros,a a responsive environment that observes a small
area using a webcam. The area contains some “tentacles,” and whenever a person
crosses the area, the tentacles move in the person’s direction. Servos move the tenta-
cles, and an Arduino controls the servos.

For all people interested in new-media art, Alicia Gibb’s thesis, “New Media Art,
Design, and the Arduino Microcontroller: A Malleable Tool,”b is a must-read.

a. http://makezine.com/2010/04/19/arduino-powered-kinetic-sculpture/
b. http://aliciagibb.com/thesis/

motor moves to the angle you’ve specified. To see the effect a bit better, form
a wire or some paper into an arrow and attach it to the motor’s gear.

It’s easy to control a servo via the serial port, and the circuit we’ve built can
be the basis for many useful and fun projects. In the next section, we’ll use
it to build an automatic blaming device.

Building a Blaminatr
Finger-pointing isn’t nice, but it can be oddly satisfying. In this section, we’ll
build a device that I call Blaminatr. Instead of blaming someone directly, you
can tell the Blaminatr to do so. In the following figure, you can see the device
in action. Tell it to blame me, and it moves an arrow so it points to “Maik.”

Chapter 13. Controlling Motors with Arduino • 230

report erratum • discuss

http://makezine.com/2010/04/19/arduino-powered-kinetic-sculpture/
http://aliciagibb.com/thesis/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Blaminatrs are perfect office toys that you can use in many situations. For
software developers, it can be a good idea to attach one to your continuous
integration (CI) system. Continuous integration systems, such as Jenkins,3

help you continuously check whether your software is in good shape.

Whenever a developer checks in changes, the CI automatically compiles the
software and runs all tests. Then it publishes the results via email or as an
RSS feed. You can easily write a small piece of software that subscribes to
such a feed. Whenever someone breaks the build, you’ll find a notification in
the feed, and you can use the Blaminatr to point to the name of the developer
who has committed the latest changes.4

In the previous section, you learned all about the servo motor you need to
build the Blaminatr. Now we need only some creativity to build the device’s
display, and we need more elaborate software. We start with a class named
Team that represents the members of our team; that is, the potential “blamees”:

Motors/Blaminatr/Blaminatr.ino
const unsigned int MAX_MEMBERS = 10;Line 1

-

class Team {-

const char** _members;-

unsigned int _num_members;5

unsigned int _positions[MAX_MEMBERS];-

public:-

Team(const char** members) {-

_members = members;-

_num_members = 0;10

const char** member = _members;-

while (*member++)-

_num_members++;-

-

const unsigned int share = 180 / _num_members;15

unsigned int pos = share / 2;-

for (unsigned int i = 0; i < _num_members; i++) {-

_positions[i] = pos;-

pos += share;-

}20

}-

-

int get_position(const char* name) const {-

int position = 0;-

for (unsigned int i = 0; i < _num_members; i++) {25

if (!strcmp(_members[i], name)) {-

3. http://jenkins-ci.org//
4. At http://urbanhonking.com/ideasfordozens/2010/05/19/the_github_stoplight/, you can see an alternative

project. It uses a traffic light to indicate your project’s current status.

report erratum • discuss

Building a Blaminatr • 231

http://media.pragprog.com/titles/msard2/code/Motors/Blaminatr/Blaminatr.ino
http://jenkins-ci.org//
http://urbanhonking.com/ideasfordozens/2010/05/19/the_github_stoplight/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

position = _positions[i];-

break;-

}-

}30

return position;-

}-

};-

The code defines several member variables: _members contains a list of up to
ten team member names, _num_members contains the actual number of people
on the team, and we store the position (angle) of the team member’s name
on the Blaminatr display in _positions.

The constructor expects an array of strings that contains the team members’
names and that is terminated by a NULL pointer. We store a reference to the
list, and then we calculate the number of team members. We iterate over the
array until we find a NULL pointer. All this happens in lines 10 to 13.

Then we calculate the position of each team member’s name on the Blaminatr’s
display. Every team member gets his or her fair share on the 180-degree
display, and the Blaminatr will point to the share’s center, so we divide the
share by 2. We store the positions in the _positions array that corresponds to
the _members array. That means the first entry of _positions contains the position
of the first team member, and so on.

With the get_position method, we get back the position belonging to a certain
name. We walk through the _members array and check whether we have found
the right member using the strcmp function. As soon as we’ve found it, we
return the corresponding entry of the _positions array. If we can’t find a team
member with the name we are looking for, we return 0.

Implementing a Blaminatr class is easy now:

Motors/Blaminatr/Blaminatr.ino
#include <Servo.h>
const unsigned int MOTOR_PIN = 9;
const unsigned int MOTOR_DELAY = 15;

class Blaminatr {
Team _team;
Servo _servo;

public:

Blaminatr(const Team& team) : _team(team) {}

void attach(const int sensor_pin) {
_servo.attach(sensor_pin);

Chapter 13. Controlling Motors with Arduino • 232

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/Motors/Blaminatr/Blaminatr.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

delay(MOTOR_DELAY);
}

void blame(const char* name) {
_servo.write(_team.get_position(name));
delay(MOTOR_DELAY);

}
};

A Blaminatr object aggregates a Team object and a Servo object. The constructor
initializes the Team instance while we can initialize the Servo instance by calling
the attach method.

The most interesting method is blame. It expects the name of the team member
to blame, calculates his position, and moves the servo accordingly. Let’s put
it all together now:

Motors/Blaminatr/Blaminatr.ino
const unsigned int MAX_NAME = 30;Line 1

const unsigned int BAUD_RATE = 9600;-

const unsigned int SERIAL_DELAY = 5;-

-

const char* members[] = { "nobody", "Bob", "Alice", "Maik", NULL };5

Team team(members);-

Blaminatr blaminatr(team);-

-

void setup() {-

Serial.begin(BAUD_RATE);10

blaminatr.attach(MOTOR_PIN);-

blaminatr.blame("nobody");-

}-

-

void loop() {15

char name[MAX_NAME + 1];-

if (Serial.available()) {-

unsigned int i = 0;-

while (Serial.available() && i < MAX_NAME + 1) {-

const char c = Serial.read();20

if (c != -1 && c != '\n')-

name[i++] = c;-

delay(SERIAL_DELAY);-

}-

name[i] = 0;25

Serial.print(name);-

Serial.println(" is to blame.");-

blaminatr.blame(name);-

}-

}30

report erratum • discuss

Building a Blaminatr • 233

http://media.pragprog.com/titles/msard2/code/Motors/Blaminatr/Blaminatr.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We define a list of member names that is terminated by a NULL pointer. The
list’s first entry is “nobody,” so we don’t have to deal with the rare edge case
when nobody is to blame. Then we use members to initialize a new Team object
and pass this object to the Blaminatr’s constructor.

More Motors Projects

Motors are fascinating. Search the Net, and you’ll find numerous projects combining
the Arduino with motors. Most of them probably deal with robotsa or remote-controlled
cars.

You’ll also find useful and exciting project like the USB hourglass.b It uses an Arduino
and a servo motor to turn a sand timer, and it observes the falling sand using an
optical sensor. Whenever all the sand has fallen through, the device turns the timer
automatically.

That’s all nice, but the device’s main purpose is to generate true random numbers.
Falling sand is a perfect basis for generating true randomness (see Generating Random
Numbers, on page 48), and the USB hourglass uses the signals from its optical sensor
to generate random numbers, sending them to the serial port.

a. http://makezine.com/projects/building-a-simple-arduino-robot/
b. http://makezine.com/2009/12/23/usb-hourglass-random-number-generat/

In the setup function, we initialize the serial port and attach the Blaminatr’s
servo motor to the pin we defined in MOTOR_PIN. Also, we initialize the Blaminatr
by blaming “nobody.”

The loop function is nearly the same as in First Steps with a Servo Motor, on
page 227. The only difference is that we do not control a servo directly, but
instead call blame in line 28.

That’s it! You can now start to draw your own display and create your own
arrow. Attach them directly to the motor or—even better—put everything into
a nice box. Compile and upload the software and start to blame.

Of course, you can use motors for more serious projects. You can use them
to build robots running on wheels or similar devices. But you cannot attach
too many motors to a “naked” Arduino, because it isn’t meant for driving
bigger loads. So if you have a project in mind that needs a significant number
of motors, you should consider buying a motor shield5 or using a special
shield, such as the Robotics Shield Kit.6

5. You can find them at http://adafruit.com or http://makershed.com.
6. http://www.parallax.com/product/130-35000

Chapter 13. Controlling Motors with Arduino • 234

report erratum • discuss

http://makezine.com/projects/building-a-simple-arduino-robot/
http://makezine.com/2009/12/23/usb-hourglass-random-number-generat/
http://adafruit.com
http://makershed.com
http://www.parallax.com/product/130-35000
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

What If It Doesn’t Work?
Working with motors is surprisingly easy, but a lot of things still can go wrong.
The biggest problem is that motors consume a lot of power, so you cannot
simply attach every motor to an Arduino. Also, you cannot easily drive more
than one motor, especially not with the small amount of power you get from
a USB port. If your motor doesn’t run as expected, check its specification and
attach an AC or DC adapter to your Arduino if necessary.

You also shouldn’t attach too much weight to your motor. Moving an arrow
made of paper is no problem, but you might run into problems if you attach
bigger and heavier things. Also, be careful not to put any obstacles in the
motor’s way. The motor’s shaft always needs to move freely.

Some motors have to be adjusted from time to time, and usually you have to
do that with a very small screwdriver. Refer to the motor’s specifications for
detailed instructions.

Exercises
• Add an Ethernet shield to the Blaminatr so you can blame people via the

Internet and not only via the serial port. Pointing your web browser to an
address such as http://192.168.1.42/blame/Maik should blame me.

• Create a thermometer based on a TMP36 temperature sensor and a servo
motor. Its display could look like the image below; that is, you have to
move an arrow that points to the current temperature.

• Use an IR receiver to control the Blaminatr. You could use the channel
key of your TV set’s remote control to move the Blaminatr from one name
to the other.

report erratum • discuss

What If It Doesn’t Work? • 235

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Part III

Appendixes

APPENDIX 1

Electronics and Soldering Basics
You didn’t need a lot of theory or background to create your first Arduino
projects. But it’s a good idea to learn about electricity and about soldering if
you want to build bigger and more sophisticated projects.

In this appendix, you’ll learn the basics of electricity, and you’ll learn about
Ohm’s law, which is probably the most important law in electronics. Also,
you’ll learn more about resistors, and you’ll see that soldering isn’t as difficult
as it might seem.

Current, Voltage, and Resistance
To build your first projects with the Arduino, you didn’t need to know much
about electricity. But at some point, you’ll need to understand what current,
voltage, and resistance are all about. For example, you already know that you
always have to put a resistor in front of an LED, but you might not know
exactly why, and you might not know how to calculate the resistor’s size for
a given LED. Let’s remedy that.

Electrical Circuits
An electrical circuit resembles a water circuit in many respects. In the following
figure,1 you can see a water circuit on the left and an electrical circuit on the
right. Isn’t it fascinating how similar they are and that you can even find a
connection between them when you use a water-driven dynamo that acts as
a power supply? Let’s take a closer look at their most important attributes.

1. Lightbulb image is from Benji Park at https://openclipart.org/detail/26218/Lightbulb_Bright-by-
bpcomp.

report erratum • discuss

https://openclipart.org/detail/26218/Lightbulb_Bright-by-bpcomp
https://openclipart.org/detail/26218/Lightbulb_Bright-by-bpcomp
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Current

Pipe

Water
Pump

Water
Mill

+

-

Current (I)

Power
Supply
Voltage

(V)

Resistance (R)

Wire

Dynamo

While water flows in a water circuit, electrons flow in an electrical circuit.
Voltage is electricity’s equivalent of water pressure and is measured in volts
(V). Voltage is the initial cause for a current, and the higher the voltage, the
faster the current flows.

In electronics, current is the amount of electricity flowing through an electric
line. It is the equivalent of the actual flow of water in a water circuit. While
we measure the water flow in liters per minute, we measure current in
amperes. One ampere means that approximately 6.24 × 1018 electrons are
flowing per second.

Every component in a circuit—be it water or electricity—resists some amount
of current. In a water circuit, it’s the pipes the water is flowing through or
perhaps a water mill. In an electrical circuit, it is the wire or a light bulb.
Resistance is an important physical phenomenon that is closely related to
current and voltage. We measure it in ohms, and its official symbol is Ω.

The German physicist Georg Ohm found that current depends on voltage and
resistance. He postulated the following form that we call Ohm’s law today (we
use I as the current’s letter for historical reasons. In the past, it stood for
inductance):

• I (current) = V (voltage) / R (resistance)

This is equivalent to the following:

• R (resistance) = V (voltage) / I (current)

• V (voltage) = R (resistance) × I (current)

So, for two given values, you can calculate the third one. Ohm’s law is the
only formula you’ll absolutely have to learn when learning electronics. When
working with LEDs, it helps you calculate the size of the resistor you need.

If you look at an LED’s data sheet, you will usually find two values: a forward
voltage and a current rating. The forward voltage usually is between 1.8V and

Appendix 1. Electronics and Soldering Basics • 240

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

3.6V, and the maximum current often is 20 mA (milliamperes). Let’s say we
have an LED with a maximum of 2.5 volts and a safe current of 20 mA. We
also assume that we have a power supply delivering 5 volts (as most Arduinos
do). What’s the right size of the resistor we need to put in front of the LED?

We have to make sure that the resistor takes 5 – 2.5 = 2.5 volts from the cir-
cuit, so only 2.5 volts are left for the LED. This value is called voltage drop.
Also, we want a maximum of 20 mA to flow through the LED. This implies
that a maximum of 20 mA (0.02 A) should flow through our resistor also.

Now that we know that 2.5V and 0.02 A should pass the LED, we can use
Ohm’s law to calculate the resistance R:

R = V / I

In our case, we have the following:

R = 2.5V / 0.02A = 125Ω

This means we need a 125Ω resistor for our LED. If you do not have a 125Ω
resistor, use a bigger one, such as 150Ω or 220Ω. It will still protect the LED
and only slightly decrease its brightness. That’s because we’d decrease the
current even more:

I = 2.5V / 150Ω = 17mA

I = 2.5V / 220Ω = 11mA

Resistors
You’ll hardly ever find an electronics project that doesn’t need resistors. So,
you’ll need them often and should get more familiar with them. Usually you’ll
use carbon or metal resistors. Metal resistors are more precise and don’t
create so much noise, but carbon resistors are cheaper. In simple circuits, it
usually doesn’t matter which type you use.

The most important attribute of a resistor is its resistance value that is mea-
sured in ohms. Only a few vendors actually print this value on the resistor,
because resistors are small parts, and it’s hard to read text that is small
enough to fit on them. So, they use a trick and encode the value using colored
stripes.

Usually you find four or five stripes on a resistor (at least on through-hole
parts; SMD resistors don’t have them). One of them is separated from the
others by a gap. (See the following figure.) The separate stripe is on the right
side of the resistor, and it tells you about the resistor’s accuracy. Gold stands
for an accuracy of ±5 percent, silver stands for ±10 percent, and no stripe

report erratum • discuss

Electrical Circuits • 241

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

means ±20 percent. Using the remaining stripes, you can calculate the
resistor value.

You read the stripes from left to right, and every color stands for a digit. (See
the following figure.) The rightmost stripe—that is, the third or fourth
one—stands for an amount of zeros to be added to the preceding digits. In
the following figure, you can see three examples:

Color Code Zeros

 Black 0 -
 Brown 1 0
 Red 2 00
 Orange 3 000
 Yellow 4 0000
 Green 5 00000
 Blue 6 000000
 Violet 7 0000000
 Gray 8 00000000
 White 9 000000000

• On the first resistor we find four stripes: brown (1), green (5), brown (1
zero), silver (±10%). That means we have a resistor value of 150Ω.

• The second resistor has four stripes again: yellow (4), violet (7), orange (3
zeros), gold (±5%). So, this resistor has a value of 47000Ω = 47kΩ.

• The third resistor has five stripes: brown (1), red (2), red (2), green (5
zeros), silver (±10%), so the value is 12,200,000Ω = 12.2MΩ.

Appendix 1. Electronics and Soldering Basics • 242

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In the beginning, the color coding seems to be complicated, but you’ll get
used to it quickly. Also, you can find countless tools for determining resistor
values on the Internet.2

For the book’s projects, this is all the theory of electricity you need to know.
To learn more about electronics, have a look at Make: Electronics [Pla10] or
at http://lcamtuf.coredump.cx/electronics/, for example.

Learning How to Use a Wire Cutter
When working with breadboards and through-hole
parts, you often have to shorten wires. Sometimes you
have to cut plain wires that you need to connect parts
in your circuit. Other times you have to cut the wires
of a component like a resistor to make it easier to han-
dle.

For these purposes, a wire cutter is indispensable.

Using a wire cutter is like using a pair of scissors. The
only difference is that you usually cut different types
of material. When cutting metal wires you should always
wear safety glasses. Often, when I cut wires, the part I
cut off flies right into my safety glasses.

Learning How to Solder
You can build nearly all of the book’s projects by plugging parts into a
breadboard or directly into the Arduino board. But sooner or later you’ll have
to learn how to solder if you want to become an expert in electronics. That’s
mainly because you’ll learn the most by building projects, and even the sim-
plest kits require some sort of soldering.

Many people think that soldering is difficult or requires expensive equipment,
so they never try to do it. The truth is that it’s cheap and pretty easy. It
requires some practice, but after only a few solder joints you’ll see that it’s
not rocket science.

In this book, we have one project that requires you to solder a pin header to
an ADXL335 breakout board. We need it for building the motion-sensing
game controller in Chapter 6, Building a Motion-Sensing Game Controller, on
page 99. In this section, you’ll learn how to do it, and you’ll need the following
equipment:

2. http://www.digikey.de/en/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band

report erratum • discuss

Learning How to Use a Wire Cutter • 243

http://lcamtuf.coredump.cx/electronics/
http://www.digikey.de/en/resources/conversion-calculators/conversion-calculator-resistor-color-code-4-band
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• A 25–30W soldering iron with a tip (preferably 1/16-inch) and a soldering
stand.

• A standard 60/40 solder (rosin-core) spool for electronics work. It should
have a 0.031-inch diameter.

• A sponge.

Before you start to solder, prepare your work area. Make sure you can easily
access all your tools and that you have something to protect your work area
from drops of solder. Wearing safety glasses is always a good idea! Even
seemingly simple and harmless activities such as cutting wires can be very
dangerous! Also make sure that your room has good ventilation, because the
solder fumes aren’t good for your health.

Bring all parts into the correct position: attach the pin header to the breakout
board, and make sure you can’t accidentally move it while soldering.

People get very creative when it comes to locking parts into a certain position.
But you have to be careful—don’t use flammable materials to bring parts
together. You also shouldn’t use parts that distribute heat very well, especially
if they’re in touch with other parts. Duct tape might work in some cases, but
be careful with it, too.

Try to find a piece of wood or something similar that has the right height: the
height of the pin headers. Then you can put the breakout board on top of it
and attach the pin headers. If you’re planning to solder more often and build
some electronics projects, you should always look for these little tools that
make your life easier.

Appendix 1. Electronics and Soldering Basics • 244

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

In the following figure, you can see how I’ve prepared all parts:

I’ve used a helping hand, a useful tool for locking parts into a position. Helping
hands usually come with a magnifying glass, and they are cheap. If you plan
to solder often, you should get one—they justify their name.

After you’ve prepared everything, it’s time to heat up the soldering iron. The
main purpose of soldering is to join metallic surfaces. In our case, we’d like
to join the surface of the pin header with the metal in the breakout board. To
achieve this, we’ll heat up the metallic parts and then connect them using
molten solder.

report erratum • discuss

Learning How to Solder • 245

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

This process depends on a certain temperature, and having the wrong tem-
perature is one of the most common soldering problems. If the temperature
is too low, your solder joints might become fragile, and you also might have
to touch the parts for too long, so you are liable to damage them. An
extremely high temperature can damage your parts right away. Experts can
debate for hours about “the right temperature,” but 600℉ to 650℉ (315℃ to
350℃) is a good compromise. Even with cheap soldering irons, you can adjust
the temperature.

Dampen the sponge (it shouldn’t be too wet) and clean the tip by wiping it
over the sponge a few times. Then tin the tip by putting a small amount of
solder back onto it. This helps protect the tip, and it also improves the heat
transfer to components:

Soldering is mainly about heat distribution, and now it’s time to heat the
joint. Make sure the tip of the soldering iron touches the part (pin header)
and the pad of the breakout board at the same time:

Keep it there for about a second, and then feed a small amount of solder
between the tip and the pin:

Appendix 1. Electronics and Soldering Basics • 246

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

As soon as the solder starts to flow, you’re safer, because the solder distributes
heat automatically. Feed some more solder (not too much!) until you have a
nice, shiny solder joint. The whole process shouldn’t take more than two to
three seconds. When you’re finished, remove the iron tip quickly and give the
joint a few seconds to cool down.

Repeat this for all six pin headers, and the result should look like this:

Test it by building the motion-sensing game controller, and play a video game
to relax.

Congratulations! You have just finished your first soldering job!

Learning How to Desolder
Let’s face it: even if soldering isn’t that difficult, things can still go wrong.
Sometimes you solder a part to the wrong place. In other cases you acciden-
tally use too much solder and create unwanted connections. To correct such
mistakes, you have to remove the excessive solder.

The following figure shows two of the most popular tools for desoldering. On
the left you see a desoldering braid, and on the right you see a desoldering
pump (also known as a solder sucker).

report erratum • discuss

Learning How to Desolder • 247

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Both tools work the same in principle: you heat the solder you want to get
rid of with the soldering iron, and then you use the tool to remove the molten
solder. When you use the desoldering pump, you heat the solder until it melts,
and then you press the pump’s button to suck the solder.

To desolder using braid, put the braid on top of the solder joint you’d like to
remove. Then press the soldering iron’s tip to the braid and wait until the
solder melts. The braid will suck the molten solder automatically.

Make sure that the distance between your fingers and the solder joint is rea-
sonable, because the braid gets pretty hot. Also make sure you’re using a
part of the braid that isn’t full of solder already.

This tutorial is only a starting point for your new shiny soldering career. You
now know that soldering isn’t too difficult, and as a next step, you can try to
build some beginner’s kits. All electronics stores offer them, and they usually
come with soldering instructions, too. You can also find excellent tutorials
and even videos on the Internet to build your skills.3

3. http://store.curiousinventor.com/guides/How_to_Solder

Appendix 1. Electronics and Soldering Basics • 248

report erratum • discuss

http://store.curiousinventor.com/guides/How_to_Solder
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

APPENDIX 2

Advanced Arduino Programming
In reality, the Arduino programming language is nothing but C++, but it has
some restrictions, and it uses a special tool suite. In this appendix, you’ll
learn what your options are. Also, you’ll find a short section showing how bit
operators work, because you need them often when working with sensors
and other devices.

The Arduino Programming Language
The first sketches you’ll write for an Arduino might seem to be written in a
special Arduino language, but they aren’t. To program the Arduino, you
usually use plain old C/C++. Unfortunately, the Arduino doesn’t understand
C or C++ code, so you have to compile the code on your PC or Mac into
machine code suitable for the Arduino’s microcontroller. This process is called
cross-compiling, and it’s the usual way of creating executable software for
microcontrollers. You edit and compile the software on your PC, and then
you transfer the machine code to the microcontroller.

In case of the Arduino, these microcontrollers are often part of the AVR family
produced by a company named Atmel. To make software development for
Atmel microcontrollers as easy as possible, Atmel has developed a whole tool
chain based on the GNU compiler tools. All tools work like the originals, but
they have been optimized for generating code for the Atmel microcontrollers.

For nearly all GNU development tools, such as gcc, ld, or as, there’s an AVR
variant: avr-gcc, avr-ld, and so on. You can find them in the hardware/tools/avr/bin
directory of the Arduino IDE.

The IDE is mainly a graphical wrapper that helps you avoid using the com-
mand-line tools directly. Whenever you compile or upload a program using
the IDE, it delegates all work to the AVR tools. As a serious software developer,

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

you should turn on a more verbose output, so you can see all command-line
tool invocations. Enable verbose output for both compilation and upload in
the Preferences menu, as described in Changing Preferences, on page 26.
Then load your blinking LED sketch and compile it. (We did this back at the
start of our journey in Changing Preferences, on page 26).

The command invocations look weird at first because of the names of the
many temporary files that are created. You should still be able to identify all
compile and link steps necessary to build even a simple sketch like our
blinking LED example. That’s the most important thing the Arduino team
did: they hid all these nasty details well behind the IDE, so even people with
no software development experience can program the Arduino. For program-
mers, it’s a good idea to work in verbose mode, because the best way to learn
about all the AVR tools is to see them in action.

Upload the program to the Arduino now to see avrdude in action. This tool is
responsible for loading code into the Arduino and can be used for programming
many other devices, too. Interestingly, the AVR tools even make it possible
to use the Arduino IDE for non-Arduino projects.

There’s another difference between Arduino programming and regular C++
code. When programming for the Arduino, you don’t define main yourself,
because it is already defined in the libraries provided by the Arduino develop-
ers. As you might have guessed, it calls setup first and then runs the loop
function in a loop. Since Arduino 1.0, it also calls serialEvent at the end of the
loop function.

Further restrictions when programming C++ on AVR microcontrollers include
the following:1

• You cannot use the Standard Template Library (STL) because it’s way too
big for the small AVR microcontrollers.

• Exception handling isn’t supported. That’s why you see the -fno-exceptions
switch often when the avr-gcc compiler is invoked.

• Dynamic memory management using new and delete isn’t supported.

In addition to all that, you should keep an eye on performance. C++ automat-
ically creates a lot of functions (copy constructors, assignment operators, and
so on) in the background that are rarely needed on the Arduino. Even with
these restrictions, the Arduino supports a powerful subset of the C++ program-
ming language. So there’s no excuse for sloppy coding!

1. http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_cplusplus

Appendix 2. Advanced Arduino Programming • 250

report erratum • discuss

http://www.nongnu.org/avr-libc/user-manual/FAQ.html#faq_cplusplus
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Bit Operations
In embedded computing, you often have to manipulate bits. You sometimes
have to read single bits to get some sensor data. In other cases, you have to
set bits to turn a device into a certain status or to make it perform some
action.

For bit manipulation, you need only a few operations. The simplest is the not
operation that inverts a bit. It turns a 0 into a 1 and vice versa. Most program-
ming languages implement the binary not operation with a ~ operator:

int x = 42; // In binary this is 101010
int y = ~x; // y == 010101

In addition, you’ll find three binary operations named AND, OR, and XOR
(eXclusive OR). Most programming languages call the corresponding operators
&, |, and ^, and their definitions are as follows:

a XOR b
a ^ b

a OR b
a | b

a AND b
a & b

ba

00000

11001

11010

01111

With these operators, it’s possible to mask bits in a number, so you can
extract certain bits. If you’re interested only in the lower two bits of a number,
you can do it as follows:

int x = 42; // In binary this is 101010
int y = x & 0x03; // y == 2 == B10

You can also set one or more bits in a number using the OR operation. The
following code sets the fifth bit in x regardless of whether this bit is 0 or 1.

int x = 42; // In binary this is 101010
int y = x | 0x10; // y == 58 == B111010

The bit shift operators « and » let you move bits to a certain position before
you work with them. The first one moves bits to the left, and the second moves
them to the right:

int x = 42; // In binary this is 101010
int y = x << 1; // y == 84 == B1010100
int z = x >> 2; // z == 10 == B1010

report erratum • discuss

Bit Operations • 251

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Shifting operations might seem intuitive, but you have to be careful when
shifting signed values.2 Although they look similar, binary operators aren’t
the same as Boolean operators. Boolean operators such as && and || don’t
operate on the bit level. They implement the rules of Boolean algebra.3

Beginners are often afraid of bit operations, but there’s no reason to fear
them. Microcontrollers operate on a bit level, so you have to be able to make
the bits obey your will. It takes some training, but it’s not rocket science.

2. http://en.wikipedia.org/wiki/Arithmetic_shift
3. http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29

Appendix 2. Advanced Arduino Programming • 252

report erratum • discuss

http://en.wikipedia.org/wiki/Arithmetic_shift
http://en.wikipedia.org/wiki/Boolean_algebra_%28logic%29
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

APPENDIX 3

Advanced Serial Programming
In nearly all of the book’s projects, we’ve used the Arduino’s serial port.
Sometimes we only emitted debug messages to monitor the current state of
our sketches, but often we needed it to actually output information or to send
commands. And the fact is, we’ve used the Serial class without explaining how
serial communication actually works. We’ll catch up on that in this appendix.

To communicate with an Arduino, we mainly used JavaScript, and in some
cases we used Processing. But many developers prefer other languages, and
in this appendix, you’ll also learn how to use C/C++, Java, Ruby, Python,
and Perl to talk to an Arduino.

Learning More About Serial Communication
In Chapter 2, Creating Bigger Projects with the Arduino, on page 23, you saw
that you need only three wires for serial communication: a common ground,
a line for transmitting data (TX), and one for receiving data (RX). (See the
diagram on page 28.)

Data is transmitted as electrical pulses, so both communication partners
need a reference for the voltage level, and that’s what the common ground is
for. The transmission line is used to send data to the recipient and has to be
connected to the recipient’s receiving line. This enables full-duplex communi-
cation where both partners can send and receive data simultaneously.
(Wouldn’t it be great if people could also communicate full-duplex?)

We now know how to connect two devices, but we still have to transmit some
data. Therefore, both communication partners have to agree on a protocol,
and on page 254, you can see what a typical serial communication looks like.
The different states of a bit are represented by different voltage levels. Usually,

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

a 0 bit is represented by 0 volts, while 5 volts stands for a 1 bit. (Some proto-
cols use -12V and 12V, respectively.)

The following parameters control a serial communication:

0 1 00000 111 1

Start Bit

Parity

Stop Bit

Data

• A start bit indicates the beginning of a data word and is used to synchro-
nize the transmitter and receiver. It is always 0.

• A stop bit tells us when the last data bit has been sent and separates two
consecutive data words. Depending on the particular protocol agreement,
there can be more than one stop bit, but that happens rarely.

• Information is transferred as binary data bits; that is, if you’d like to
transmit the letter M, you have to turn it into a number first. Several
character set encodings are available, but when working with the Arduino,
the ASCII encoding fits best. In ASCII, an uppercase M is encoded as the
decimal number 77, which is 01001101 in binary. This is the bit sequence
that eventually gets transmitted.

• The parity bit indicates whether the number of 1s in the data has been
odd or even. This is a simple error-checking algorithm that is rarely used
and that stems from a time when network connections were less reliable
than they are today. Parity control can be “none” (no parity bit is sent),
“odd” (the parity bit is set if the amount of 1s in the data bits is odd;
otherwise, it is 0), or “even” (the parity bit is set if the amount of 1s in the
data bits is even; otherwise, it is 0). We chose odd parity for our data, and
because there are 4 bits set to 1 in 01001101, the parity bit is 0.

• The baud rate defines the transmission speed and is measured in trans-
mission steps per second. When working with the Arduino, typical baud
rates are 9600, 14400, 19200, or even 115200. Note that the baud rate
doesn’t define how much data is actually transferred per second, because
you have to take the control bits into account. If your connection settings
are 1 start bit, 1 stop bit, no parity, and 8 bits per byte, then you have to
transfer 1 + 1 + 8 = 10 bits to transfer a single byte. With a baud rate set
to 9600, you can then theoretically send 9600 / 10 = 960 bytes per sec-
ond—at least if every bit gets transferred in exactly one transmission step.

Appendix 3. Advanced Serial Programming • 254

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Serial Communication Using Various Languages
When working with the Arduino, you often have to talk to it using a serial
port. In this section, you’ll learn how to do that in various programming lan-
guages. For demonstration purposes, we’ll use the same Arduino sketch for
all of them:

SerialProgramming/AnalogReader/AnalogReader.ino
const unsigned int BAUD_RATE = 9600;
const unsigned int NUM_PINS = 6;

String pin_name = "";
boolean input_available = false;

void setup() {
Serial.begin(BAUD_RATE);

}

void loop() {
if (input_available) {

if (pin_name.length() > 1 &&
(pin_name[0] == 'a' || pin_name[0] == 'A'))

{
const unsigned int pin = pin_name.substring(1).toInt();
if (pin < NUM_PINS) {

Serial.print(pin_name);
Serial.print(": ");
Serial.println(analogRead(pin));

} else {
Serial.print("Unknown pin: ");
Serial.println(pin);

}
} else {
Serial.print("Unknown pin name: ");
Serial.println(pin_name);

}
pin_name = "";
input_available = false;

}
}

void serialEvent() {
while (Serial.available()) {

const char c = Serial.read();
if (c == '\n')
input_available = true;

else
pin_name += c;

}
}

report erratum • discuss

Serial Communication Using Various Languages • 255

http://media.pragprog.com/titles/msard2/code/SerialProgramming/AnalogReader/AnalogReader.ino
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

This program waits for the name of an analog pin (a0, a1,…a5) and returns
its current value. So, all of our clients have to send data to the Arduino (the
name of the pin), and they have to receive the result. In the following figure,
you can see it working with the IDE’s serial monitor.

Although you have already seen a few Arduino programs using the serial port,
you should pay special attention to the sketch above, because it uses one of
the new features in Arduino 1.0: the serialEvent function. The Arduino calls
this function automatically at the end of the loop function, and you can use
it to process data arriving at the serial port. This nicely decouples your
application’s logic from the more or less mechanical task of performing serial
communication.

Programs using serialEvent often follow the same pattern. They define a global
variable for aggregating incoming data (pin_name in our case), and they define
a global Boolean variable that indicates whether new data is available
(input_available, in our case). Whenever we read a newline character from the
serial port, we set input_available to true. So, when the Arduino calls loop the next
time, we know that new data has arrived, and we also know that we can find
it in pin_name. After we have processed the data, we set the input string to an
empty string and set input_available to false.

Back to the clients we’re going to implement. Although we use different pro-
gramming languages to implement them, they all look similar: they expect
the name of the serial port to connect to as a command-line argument; they
constantly send the string “a0” to the Arduino to get back the current value
of analog pin 0; they print the result to the console; they use a constant baud
rate of 9600; and they wait for two seconds after opening the serial port,
because many Arduinos reboot upon opening a serial connection.

Appendix 3. Advanced Serial Programming • 256

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Some Arduinos—for example, the Leonardo or the Micro—do not reboot upon
opening a serial connection. If you’re using one of these boards, your program
should wait until the serial stream is open:

Serial.begin(9600);
while (!Serial) ;

For some of the clients, you need to install additional libraries. In some cases,
you have to do that as an admin user on your machine. I won’t mention that
explicitly in the following sections. Also, you should make sure you don’t have
any serial monitor windows open when running one of the examples in the
following sections.

Finally, you should keep in mind that all sample programs show the bare
mechanics of serial port programming. In production code you’d at least check
whether the data you read back from the Arduino has the right format.

C/C++
Although you program the Arduino in C++, you don’t need to write clients
talking to the Arduino in C++ or C. Still, you can, and it’s easy if you use Tod
E. Kurt’s excellent arduino_serial1 as a basis.

The project implements a complete command-line tool offering a lot of useful
options. For our purposes, that’s not necessary. It’s sufficient to download
the files arduino-serial-lib.h and arduino-serial-lib.c.

The arduino-serial library exports the following functions:

• serialport_init opens a serial port connection. It expects the name of the
serial port to be opened and the baud rate to be used. It returns a file
descriptor if everything went fine, and it returns -1 otherwise.

• When you no longer need the serial port connection, you should close it
using serialport_close.

• With serialport_writebyte, you can send a single byte to an Arduino connected
to your computer’s serial port. Simply pass it the file descriptor returned
by serialport_init and the byte to be written. It returns -1 if an error occurred.
Otherwise, it returns 0.

• serialport_write writes an entire string to the serial port. It expects a file
descriptor and the string to be written. It returns -1 if an error occurred.
Otherwise, it returns 0.

1. https://github.com/todbot/arduino-serial

report erratum • discuss

Serial Communication Using Various Languages • 257

https://github.com/todbot/arduino-serial
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

• Use serialport_read_until to read data from a serial port. Pass it a file descriptor
and a buffer to be filled with the data read. The method also expects a
delimiter character, the maximum length of the buffer, and a timeout
value measured in milliseconds. serial_port_read_until stops reading when it
finds the delimiter character, when the buffer is full, or when it times out.
If it cannot read any more data before one of these conditions is met, it
returns -1. Otherwise, it returns 0.

• To make sure that all data you’ve written gets actually transferred, call
serialport_flush and pass it the file descriptor of your serial port connection.

Here’s how to use the code for communicating with our analog reader sketch
(note that the following code will run on your PC and not on your Arduino):

SerialProgramming/C/analog_reader.c
#include <stdio.h>Line 1

#include <unistd.h>-

#include <termios.h>-

#include "arduino-serial-lib.h"-

#define MAX_LINE 2565

-

int main(int argc, char* argv[]) {-

int timeout = 1000;-

-

if (argc == 1) {10

printf("You have to pass the name of a serial port.\n");-

return -1;-

}-

int baudrate = B9600;-

int arduino = serialport_init(argv[1], baudrate);15

if (arduino == -1) {-

printf("Could not open serial port %s.\n", argv[1]);-

return -1;-

}-

sleep(2);20

char line[MAX_LINE];-

while (1) {-

int rc = serialport_write(arduino, "a0\n");-

if (rc == -1) {-

printf("Could not write to serial port.\n");25

} else {-

serialport_read_until(arduino, line, '\n', MAX_LINE, timeout);-

printf("%s", line);-

}-

}30

serialport_close(arduino);-

return 0;-

}-

Appendix 3. Advanced Serial Programming • 258

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/SerialProgramming/C/analog_reader.c
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

First we import all the libraries we need, and we define a constant for the
maximum length of the lines we are going to read from the Arduino. Then we
define a main function.

After we’ve made sure that the name of a serial port was passed on the com-
mand line, we initialize a serial port in line 15. Then we sleep for two seconds
to give the Arduino some time to get ready. After that, we start a loop in line
23 where we constantly send the string “a0” to the Arduino. We check the
result of serialport_write, and if it was successful, we read the result sent by the
Arduino in line 27. Let’s compile our little program:

maik> gcc arduino-serial-lib.c analog_reader.c -o analog_reader

Determine what serial port your Arduino is connected to (mine is connected
to /dev/tty.usbmodem24321) and run the program like this:

maik> ./analog_reader /dev/tty.usbmodem24321
a0: 495
a0: 376
^C

Everything works as expected, and accessing a serial port using C isn’t that
difficult. To embed this code into a C++ program, you should wrap it in a
class named SerialPort or something similar.

Note that the arduino-serial library works on any POSIX-compatible system—in
other words, it won’t work on Windows.

Java
The Java platform standardizes a lot, and it also defines how to access a
serial port in the Java Communications API.2 But the API is only a specification
that still has to be implemented. Unfortunately, there is no complete or even
perfect implementation available at the time of this writing.

For many years the RXTX project3 provided a good implementation, but it
hasn’t been updated for a while now.

Oracle’s own implementation runs only on a few platforms, and the remaining
solutions are commercial products you have to pay for.

Fortunately, the jSSC (java-simple-serial-connector) project4 comes to the
rescue. It doesn’t implement the Java Communications API, but it follows a

2. http://www.oracle.com/technetwork/java/index-jsp-141752.html
3. http://rxtx.qbang.org/
4. https://code.google.com/p/java-simple-serial-connector/

report erratum • discuss

Serial Communication Using Various Languages • 259

http://www.oracle.com/technetwork/java/index-jsp-141752.html
http://rxtx.qbang.org/
https://code.google.com/p/java-simple-serial-connector/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

rather pragmatic approach. (Guess why we’re using it?) Also, it doesn’t have
a lot of bells and whistles yet, but it runs on many platforms and works per-
fectly with the Arduino.

jSSC is completely self-contained—that is, you only need the jssc.jar file to get
started with your first project. Download the most current release and make
sure that jssc.jar is on your class path. Then enter the following code in your
favorite IDE or text editor:

SerialProgramming/Java/AnalogReader.java
import jssc.SerialPort;
import jssc.SerialPortList;
import jssc.SerialPortException;

public class AnalogReader {
public static void main(String[] args) throws Exception {

if (args.length != 1) {
System.out.println(

"You have to pass the name of a serial port."
);
System.exit(1);

}

try {
SerialPort serialPort = new SerialPort(args[0]);
serialPort.openPort();
Thread.sleep(2000);
serialPort.setParams(

SerialPort.BAUDRATE_9600,
SerialPort.DATABITS_8,
SerialPort.STOPBITS_1,
SerialPort.PARITY_NONE

);

while (true) {
serialPort.writeString("a0\n");
System.out.println(readLine(serialPort));

}
}
catch (SerialPortException ex) {
System.out.println(ex);

}
}

private static String readLine(SerialPort serialPort) throws Exception {
final int MAX_LINE = 10;
final byte NEWLINE = 10;

byte[] line = new byte[MAX_LINE];
int i = 0;

Appendix 3. Advanced Serial Programming • 260

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/SerialProgramming/Java/AnalogReader.java
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

byte currentByte = serialPort.readBytes(1)[0];
while (currentByte != NEWLINE) {
line[i++] = currentByte;
currentByte = serialPort.readBytes(1)[0];

}
return new String(line);

}
}

Although this program defines a class named AnalogReader, it’s not very object-
oriented. We only define it because everything in Java has to live in a class
context.

The main function implements the protocol for our Arduino sketch. First, we
make sure that the name of a serial port was set on the command line. Then
we use this name to initialize a new SerialPort object. To open the serial port,
we call the openPort method. After a two-second pause, we configure the serial
port’s parameters.

In the loop that follows, we send the string “a0” to the serial port using Serial-
Port’s writeString method. Afterward, we read the result by invoking the readLine
function and print it to the console.

Currently, jSSC doesn’t offer a readLine function, so we have to write our
own. The function reads the Arduino’s response byte by byte using the readBytes
method, because jSSC doesn’t offer a method for reading a single byte. readLine
appends all bytes read to the byte array named line until it detects a newline
character (ASCII code 10). Finally, it converts the byte array into a String object
and returns it.

Here’s how to compile and use the program:

maik> javac -cp jssc.jar AnalogReader.java
maik> java -cp jssc.jar:. AnalogReader /dev/tty.usbmodem24321
a0: 496
a0: 433
a0: 328
a0: 328
^C

AnalogReader does exactly what it’s intended to do: it permanently prints the
values of the analog pin 0. Accessing a serial port in Java is a piece of cake
if you use the right libraries.

Note that jSSC also allows you to write object-oriented code. It has a Serial-
PortEventListener interface that makes it easy to decouple the handling of serial

report erratum • discuss

Serial Communication Using Various Languages • 261

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

communication from your application’s logic. Have a look at the project’s
examples to learn more about these features.

Ruby
Even dynamic languages such as Ruby give you instant access to your com-
puter’s serial port and to an Arduino connected to it. But before that, you
need to install the serialport gem:

maik> gem install serialport

Using it, you can connect to the Arduino in just 30 lines of code.

SerialProgramming/Ruby/analog_reader.rb
require 'rubygems'Line 1

require 'serialport'-

-

if ARGV.size != 1-

puts "You have to pass the name of a serial port."5

exit 1-

end-

-

port_name = ARGV[0]-

baud_rate = 960010

data_bits = 8-

stop_bits = 1-

parity = SerialPort::NONE-

-

arduino = SerialPort.new(15

port_name,-

baud_rate,-

data_bits,-

stop_bits,-

parity20

)-

-

sleep 2-

while true-

arduino.write "a0\n"25

sleep 0.01-

line = arduino.gets.chomp-

puts line-

end-

We create a new SerialPort object in line 15, passing it all the usual parameters.
After we sleep for two seconds, we start a loop and call write on the SerialPort
object. To get the result back from the Arduino, we call gets, and then we print
the result to the console. Here you can see the program in action:

Appendix 3. Advanced Serial Programming • 262

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/SerialProgramming/Ruby/analog_reader.rb
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

maik> ruby analog_reader.rb /dev/tty.usbmodem24321
a0: 496
a0: 456
a0: 382
^Canalog_reader.rb:27:in `gets': Interrupt

from analog_reader.rb:27

Using Ruby to access an Arduino is a good choice because you can fully
concentrate on your application. All of the ugly details you have to deal with
in other programming languages are well hidden.

Python
Python is another dynamic programming language you can use to quickly
create Arduino clients. For programming a serial port, download and install
the pyserial library first.5 There is a special installer for Windows, but usually
it’s sufficient to install it like this:

maik> python setup.py install

After you’ve installed pyserial, you can use it to create a client for our analog
reader sketch:

/SerialProgramming/Python/analog_reader.py
import sysLine 1

import time-

import serial-

-

if len(sys.argv) != 2:5

print "You have to pass the name of a serial port."-

sys.exit(1)-

-

serial_port = sys.argv[1]-

arduino = serial.Serial(10

serial_port,-

9600,-

serial.EIGHTBITS,-

serial.PARITY_NONE,-

serial.STOPBITS_ONE)15

time.sleep(2)-

while 1:-

arduino.write("a0\n")-

line = arduino.readline().rstrip()-

print line20

5. http://sourceforge.net/projects/pyserial/files/

report erratum • discuss

Serial Communication Using Various Languages • 263

http://media.pragprog.com/titles/msard2/code//SerialProgramming/Python/analog_reader.py
http://sourceforge.net/projects/pyserial/files/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

We make sure that we have the name of a serial port on the command line.
Then we create a new Serial object in line 10, passing it all the parameters
we’d like to use for serial communication.

After sleeping for two seconds, we start an infinite loop. In the loop, we send
the string “a0” to the serial port calling write. We read the result returned by
the Arduino using the readline method and output the result to the console.
Here’s what a typical session looks like:

maik> python analog_reader.py /dev/tty.usbmodem24321
a0: 497
a0: 458
a0: 383
^C

Isn’t that code beautiful? With about twenty lines of Python code, you get full
control over your Arduino sketch. So, Python is another excellent choice for
writing Arduino clients.

Perl
Perl is still one of the most widely used dynamic programming languages,
and it has good support for serial communication. Some distributions come
with libraries for programming the serial port, but usually you have to install
a module first.

Windows users should have a look at Win32::SerialPort.6 For the rest, Device::Seri-
alPort is a good choice. You can install it as follows:

maik> perl -MCPAN -e 'install Device::SerialPort'

Then use it like this:

SerialProgramming/Perl/analog_reader.pl
use strict;Line 1

use warnings;-

use Device::SerialPort;-

-

my $num_args = $#ARGV + 1;5

if ($num_args != 1) {-

die "You have to pass the name of a serial port.";-

}-

-

my $serial_port = $ARGV[0];10

my $arduino = Device::SerialPort->new($serial_port);-

$arduino->baudrate(9600);-

$arduino->databits(8);-

6. http://search.cpan.org/dist/Win32-SerialPort/

Appendix 3. Advanced Serial Programming • 264

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/SerialProgramming/Perl/analog_reader.pl
http://search.cpan.org/dist/Win32-SerialPort/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

$arduino->parity("none");-

$arduino->stopbits(1);15

$arduino->read_const_time(1);-

$arduino->read_char_time(1);-

-

sleep(2);-

while (1) {20

$arduino->write("a0\n");-

my ($count, $line) = $arduino->read(255);-

print $line;-

}-

We check whether the name of a serial port was passed on the command line.
Then we create a new Device::SerialPort instance in line 11. We configure all
serial port parameters, and in line 16, we set a timeout value for read calls. If
we did not set it, read would return immediately, giving the Arduino no time
to respond. read_char_time sets a timeout for the waiting period between two
characters.

Then we sleep for two seconds and start an infinite loop. Here we send the
string “a0” to the serial port and read the Arduino’s response using the read
method. read expects a maximum number of bytes to be read, and it returns
the actual number of bytes read and the data it received. Finally, we output
the result to the console. A typical program run looks as follows:

maik> perl analog_reader.pl /dev/tty.usbmodem24321
a0: 496
a0: 366
a0: 320
^C

That’s it! It takes only about twenty lines of Perl code to create a client for the
analog reader Arduino sketch. So, Perl is a good choice for programming
Arduino clients, too.

report erratum • discuss

Serial Communication Using Various Languages • 265

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

APPENDIX 4

Controlling the Arduino with a Browser
For many hardware projects, you’ll need an application on your computer
that visualizes some sensor data or that controls your device. In the Arduino
scene, many people use Processing1 for this purpose. Processing is a good
choice. It’s fast, it has excellent multimedia support, and it supports a lot of
libraries because it uses the Java Virtual Machine (JVM).

Processing has some disadvantages, too. It is very similar to Java; that is, it’s
a statically typed programming language. As such, it isn’t a good tool for
building prototypes interactively and incrementally. Also, you have to install
Java and the Processing environment to use it.

In many cases it’s a better choice to use a regular web browser to write
applications that communicate with the Arduino. Web browsers have excellent
multimedia support, too, and the JavaScript programming language is easy
to learn and widely available.

The only problem is that most web browsers don’t support serial port program-
ming. But fortunately, Google Chrome comes with native support for serial
port programming. Due to security restrictions, you can access the correspond-
ing library only in Chrome Web apps and not on regular websites. Fortunately,
it’s not difficult to create Chrome apps, and in this appendix you’ll learn how.

What Are Google Chrome Apps?
Over the years, web browsers have evolved from simple applications used for
rendering HTML documents to full-blown programming environments. They’ve
become so powerful that you can barely distinguish them from operating

1. http://processing.org

report erratum • discuss

http://processing.org
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

systems today. Chrome OS,2 for example, is an operating system that was
designed for executing web applications.

Very early on, Google realized that applications made using standard web
technologies such as HTML5, CSS3, and JavaScript could also work well on
the desktop. So they invented Google Chrome apps, a technology for using
web technologies to create desktop applications.

Google operates a web shop for Chrome apps.3 Also, the company has released
an application launcher that allows you to start Chrome apps without starting
the browser.

Unlike regular websites, you can use many Chrome apps when you’re offline.
You can even find complete office suites that were implemented as Chrome
apps.

In contrast to native applications, web applications and JavaScript programs
are often limited in a number of ways. Usually that’s a good thing, because
it prevents malicious websites from compromising your computer. Still, there
are situations where a bit more freedom would be advantageous—for example,
if you’d like to access serial devices from your browser.

Chrome apps address exactly this issue and provide APIs to access serial,
USB, or Bluetooth devices. They also come with a mature permission manage-
ment, so users can decide whether a certain application should get access to
a particular resource.

2. http://en.wikipedia.org/wiki/Chrome_OS
3. https://chrome.google.com/webstore/category/apps

Appendix 4. Controlling the Arduino with a Browser • 268

report erratum • discuss

http://en.wikipedia.org/wiki/Chrome_OS
https://chrome.google.com/webstore/category/apps
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Creating a Minimal Chrome App
Chrome apps are zip files that contain all the assets you’d usually expect in
a web application. They contain HTML files, JavaScript files, images, videos,
and so on. In addition, each zip archive contains two special files: manifest.json
and background.js.

manifest.json describes the Chrome app’s metadata and typically looks like this:

ChromeApps/SimpleApp/manifest.json
{

"manifest_version": 2,
"name": "My First Chrome App",
"version": "1",
"permissions": ["serial"],
"app": {

"background": {
"scripts": ["background.js"]

}
}

}

It uses JavaScript Object Notation (JSON)4 and supports a lot of different
options.5

Only name and version are mandatory. They specify the app’s name and version.
These attributes will appear in the Chrome Web Store, if you decide to make
your application available to the public. So choose them carefully if you’re
going to release your application.

manifest_version contains the version of the manifest file’s specification. Currently,
you must set it to 2 for Chrome apps.

With the permissions option, your Chrome app can request permissions that
applications do not have by default. We set it to serial so the Chrome app is
allowed to access the computer’s serial port. Users who install a Chrome app
have to agree to all permissions it requests.

Eventually, manifest.json sets the Chrome app’s background page to a file named
background.js. Which brings us to the second mandatory file in each Chrome
app: background.js.

Not only does every Chrome app need a starting point, but every app also
needs some kind of lifecycle management. Like operating systems control a

4. http://json.org/
5. https://developer.chrome.com/apps/manifest

report erratum • discuss

Creating a Minimal Chrome App • 269

http://media.pragprog.com/titles/msard2/code/ChromeApps/SimpleApp/manifest.json
http://json.org/
https://developer.chrome.com/apps/manifest
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

native application’s lifecycle, the Chrome environment controls a web appli-
cation’s lifecycle. It provides the web applications with important events, such
as alarms or signals.

The background.js file is where you connect your Chrome app to the Chrome
runtime environment. You can register for many events, but you at least have
to specify what happens when your application gets launched. Here’s how
you can do that:

ChromeApps/SimpleApp/background.js
chrome.app.runtime.onLaunched.addListener(function() {

chrome.app.window.create('main.html', {
id: 'main',
bounds: { width: 200, height: 100 }

});
});

The preceding file adds a new listener function to Chrome’s runtime environ-
ment. Specifically, it registers a listener function for the onLaunched event—that
is, the function will be called when the Chrome app gets launched.

The listener opens a new Chrome app window by calling the chrome.app.win-
dow.create function. This function expects the name of an HTML document to
be opened and some optional arguments, such as the window’s ID and its
bounds. For our first Chrome app, the HTML document looks as follows:

ChromeApps/SimpleApp/main.html
<!DOCTYPE html>
<html>

<head>
<title>My First Chrome App</title>

</head>
<body>

<p>Hello, world!</p>
</body>

</html>

These three files (manifest.json, background.js, and main.html) are all you need for a
basic Chrome app. In the next section, you’ll learn how to run the application
for the first time.

Starting the Chrome App
During development, it’d be tedious to create zip archives every time you
wanted to try your latest changes to a Chrome app. That’s why the Chrome
browser supports the execution of unzipped applications. Point the browser

Appendix 4. Controlling the Arduino with a Browser • 270

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/ChromeApps/SimpleApp/background.js
http://media.pragprog.com/titles/msard2/code/ChromeApps/SimpleApp/main.html
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

to chrome://extensions or choose the Tools > Extensions menu. You’ll see
something like the following figure:

Make sure the Developer Mode checkbox at the
top-right corner is checked. Click the Load
Unpacked Extension button to load the Chrome
app you wrote in the previous section. Click the
Launch link belonging to the My First Chrome
App application. Chrome will start a new Chrome
app, which will look like the screenshot.

The Chrome app looks like a regular application in many regards. On Mac
OS X, for example, it has a menu bar with a quit function, and it runs in a
regular application window that you can minimize, maximize, and hide.

Exploring the Chrome Serial API
On Chrome’s Extensions site, you’ll see a link named background page next to
each Chrome app. This link actually refers to a Chrome app’s background

report erratum • discuss

Exploring the Chrome Serial API • 271

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

page. If you click it, Chrome will open a console for the background page.
Also, it automatically creates another link next to it, pointing to the applica-
tion’s main page. If you click this link, you’ll get access to all of your applica-
tion’s innards—that is, you’ll get a JavaScript console for your running Chrome
App.

Because our first Chrome app’s manifest requests permission for accessing
the serial port, you can use Chrome’s serial API6 in the application’s JavaScript
console.

The following function prints the paths to all serial devices connected to your
computer (to enter multi-line functions in the JavaScript console, press
Shift+Enter at the end of each line):

chrome.serial.getDevices(function(devices) {
devices.forEach(function(d) {

console.log(d.path);
})

});

On my machine this function outputs the following:

/dev/cu.Bluetooth-Incoming-Port
/dev/tty.Bluetooth-Incoming-Port
/dev/cu.Bluetooth-Modem
/dev/tty.Bluetooth-Modem
/dev/cu.usbmodem24321
/dev/tty.usbmodem24321

The last two lines represent the serial port connected to my Arduino. With
the following statement you can connect to the Arduino from the JavaScript
console:

chrome.serial.connect(
"/dev/tty.usbmodem24321",
{ bitrate: 38400 },
function(c) { console.log(c) })

chrome.serial.connect expects three arguments. The first is the path to the serial
port to connect to. With the second argument, you can specify typical options
for serial ports, such as the baud rate (named bitrate in this case) or the parity
bit. Eventually you have to pass a callback function that gets called after
Chrome tries to establish the connection.

6. https://developer.chrome.com/apps/serial

Appendix 4. Controlling the Arduino with a Browser • 272

report erratum • discuss

https://developer.chrome.com/apps/serial
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The callback function receives an object containing all information about the
connection. The statement above prints a text representation of the serial
connection object that has been created:

Object {
bitrate: 38400
bufferSize: 4096
connectionId: 13
ctsFlowControl: false
dataBits: "eight"
name: ""
parityBit: "no"
paused: false
persistent: false
receiveTimeout: 0
sendTimeout: 0
stopBits: "one"

}

This object contains all properties you’d expect in an object representing a
serial connection. It contains properties for the parity bit and stop bit settings.
One of its most important properties is connectionId. If the call to connect was
successful, its value is greater than zero.

In a next step, you can add a receive listener that gets called whenever data
arrives at the serial port:

var listener = function(r) { console.log(r.data); }
chrome.serial.onReceive.addListener(listener)

This listener outputs the data it receives on the console. Its output looks like
this:

ArrayBuffer {}
ArrayBuffer {}
ArrayBuffer {}
...

This probably isn’t what you expected. The problem is that the Chrome Serial
API stores the data it receives in an ArrayBuffer object. This is necessary because
you can transmit not only textual, but also binary data over a serial connec-
tion. JavaScript doesn’t support binary data out of the box, so you have to
use a few helper classes, such as ArrayBuffer.

Using the following function, you can turn the content of an ArrayBuffer object
into a JavaScript string:

report erratum • discuss

Exploring the Chrome Serial API • 273

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

function arrayBufferToString(buf) {
var bufView = new Uint8Array(buf);
var encodedString = String.fromCharCode.apply(null, bufView);
return decodeURIComponent(escape(encodedString));

};

Although this function comprises only a few statements, it’s very complex. It
expects an ArrayBuffer object containing data encoded in UTF-8. That’s why it
creates a Uint8Array object first. An ArrayBuffer represents an arbitrary chunk of
memory, and using view classes like Uint8Array, you can specify how the
memory chunk should be interpreted. In our case, we want to interpret the
data we’ve received as characters encoded in UTF-8.

JavaScript strings are usually encoded in UTF-16, so the next two statements
convert the UTF-8 data we’ve received into a UTF-16 string. They use the
function arrayBufferToString to turn ArrayBuffer objects into JavaScript strings.7

var listener = function(r) { console.log(arrayBufferToString(r.data)); }
chrome.serial.onReceive.addListener(listener)

This listener outputs the data received from the Arduino in a readable manner.
Note that you’ll see a lot of unexpected line breaks because the serial API
doesn’t look for newline characters. Whenever it receives a chunk of data, it
hands the chunk over to the listener. It’s the application’s responsibility to
interpret the data, and you’ll learn how to do this in the next section.

You’ve learned how to create your own Chrome apps and how to talk to serial
devices on the JavaScript console. But one of the great things about JavaScript
and Chrome apps is that you can tinker so easily with APIs in the browser.

Writing a SerialDevice Class
Playing with a new library in an interactive environment is a great way to
learn. Still, you eventually have to come up with some proper JavaScript code
that you can actually use in your project.

JavaScript supports object-oriented programming, so it seems logical to put
all code related to accessing the serial port into its own class. This way, you
can reuse it in other projects, and if you have to fix bugs or improve the code,
you have to do it only in one place. In addition, chances are good that there
will be a cross-browser solution for accessing the serial port soon.8 When this
happens, you can replace the innards of your class with the new standard

7. At http://ecmanaut.blogspot.de/2006/07/encoding-decoding-utf8-in-javascript.html, you can find a detailed
explanation of this function. It’s not for the faint of heart!

8. http://whatwg.github.io/serial/

Appendix 4. Controlling the Arduino with a Browser • 274

report erratum • discuss

http://ecmanaut.blogspot.de/2006/07/encoding-decoding-utf8-in-javascript.html
http://whatwg.github.io/serial/
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

API, and your applications will work on all browsers automatically. At least
the parts that access the serial port—all other parts will still be subject to
browser incompatibilities, of course.

In this section, we’ll create a SerialDevice class that we can use in many of our
projects. It’s based on one of the standard Google Chrome app samples,9 and
you should have a look at the other samples, too. Studying them is a great
way to learn.

Creating classes in JavaScript isn’t difficult, but it’s completely different from
most other object-oriented languages you might know. JavaScript’s object
system is based on prototypes, not classes. Instead of providing a template
(class) for creating new objects, you create new objects immediately. Then
you refine these objects and can use them afterward as a template (or parent)
for other objects.

Despite all differences between class-based and prototype-based languages,
you have to create your objects somehow. In JavaScript, you can use a con-
structor function:

ChromeApps/SerialDevice/js/serial_device.js
var SerialDevice = function(path, baudRate) {Line 1

this.path = path;-

this.baudRate = baudRate || 38400;-

this.connectionId = -1;-

this.readBuffer = "";5

this.boundOnReceive = this.onReceive.bind(this);-

this.boundOnReceiveError = this.onReceiveError.bind(this);-

this.onConnect = new chrome.Event();-

this.onReadLine = new chrome.Event();-

this.onError = new chrome.Event();10

};-

Using this function you can create new SerialDevice objects like this:

var arduino = new SerialDevice("/dev/tty.usbmodem24321");

Note the frequent use of the this keyword. In JavaScript, this refers to the cur-
rent function’s execution context. You can use it for various purposes. When
creating objects, you’ll most often use it to create attributes and methods
that are bound to a certain object. In lines 2 to 5, we use it to define a few
instance variables, such as path.

In the following two lines, we use it to define two more instance variables.
This time, we use this also on the right-hand side of the assignment and pass

9. https://github.com/GoogleChrome/chrome-app-samples/tree/master/samples/serial/ledtoggle

report erratum • discuss

Writing a SerialDevice Class • 275

http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/js/serial_device.js
https://github.com/GoogleChrome/chrome-app-samples/tree/master/samples/serial/ledtoggle
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

it to the bind method. bind creates a new function and sets the new function’s
this keyword to the value you passed to bind originally. Using bind, you can
define a function now, but make sure that it has a certain context when you
actually call it.

When working with event handlers, this is often necessary. Users of the Seri-
alDevice class should be able to pass their own callback functions, but they
should be executed in the class’ context. You’ll see how this works in a minute.

At the end of the constructor, we define three instance variables that are all
instances of the chrome.Event class.10 This class provides some nice features to
define and dispatch events within Chrome apps. We use it to define the three
events that users of our SerialDevice class can listen for. Now users can register
for readLine events using the onReadLine property.

The next three methods of the SerialDevice class implement everything needed
for connecting and disconnecting serial devices:

ChromeApps/SerialDevice/js/serial_device.js
SerialDevice.prototype.connect = function() {Line 1

chrome.serial.connect(-

this.path,-

{ bitrate: this.baudRate },-

this.onConnectComplete.bind(this))5

};-

-

SerialDevice.prototype.onConnectComplete = function(connectionInfo) {-

if (!connectionInfo) {-

console.log("Could not connect to serial device.");10

return;-

}-

this.connectionId = connectionInfo.connectionId;-

chrome.serial.onReceive.addListener(this.boundOnReceive);-

chrome.serial.onReceiveError.addListener(this.boundOnReceiveError);15

this.onConnect.dispatch();-

};-

-

SerialDevice.prototype.disconnect = function() {-

if (this.connectionId < 0) {20

throw "No serial device connected.";-

}-

chrome.serial.disconnect(this.connectionId, function() {});-

};-

10. https://developer.chrome.com/extensions/events

Appendix 4. Controlling the Arduino with a Browser • 276

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/js/serial_device.js
https://developer.chrome.com/extensions/events
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

First of all, you should note that we define all methods on the prototype prop-
erty of the SerialDevice object. I won’t go into the details here, but you should
know that this is one way to add new methods to objects in JavaScript.

The connect method delegates its work to the chrome.serial.connect function that
you saw in the previous section already. The only thing worth noting is the
callback function we pass in the function call. Again we use bind to set the
callback function’s context explicitly. This way, we make sure that onConnect-
Complete has access to the properties of the SerialDevice object.

We benefit from that in the onConnectComplete method. Here we can set the con-
nectionId property of our SerialDevice object as soon as we’ve successfully connect-
ed to a serial device. If we hadn’t bound onConnectComplete before, this would
have a completely different meaning in this function, and we couldn’t access
the properties of the SerialDevice object.

In lines 14 and 15, we use the same technique to add receive and error listen-
ers to the chrome.serial object. Here we use the listeners we’ve prepared in the
constructor function before. After we’ve established the connection success-
fully, we call the onConnect object’s dispatch method to spread the good news to
all listeners outside.

Eventually, we have to implement the actual listener functions that deal with
incoming and outgoing data and with errors:

ChromeApps/SerialDevice/js/serial_device.js
SerialDevice.prototype.onReceive = function(receiveInfo) {

if (receiveInfo.connectionId !== this.connectionId) {
return;

}

this.readBuffer += this.arrayBufferToString(receiveInfo.data);

var n;
while ((n = this.readBuffer.indexOf('\n')) >= 0) {

var line = this.readBuffer.substr(0, n + 1);
this.onReadLine.dispatch(line);
this.readBuffer = this.readBuffer.substr(n + 1);

}
};

SerialDevice.prototype.onReceiveError = function(errorInfo) {
if (errorInfo.connectionId === this.connectionId) {

this.onError.dispatch(errorInfo.error);
}

};

SerialDevice.prototype.send = function(data) {

report erratum • discuss

Writing a SerialDevice Class • 277

http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/js/serial_device.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

if (this.connectionId < 0) {
throw "No serial device connected.";

}
chrome.serial.send(

this.connectionId,
this.stringToArrayBuffer(data),
function() {});

};

onReceive basically works like the sample listener we implemented in Exploring
the Chrome Serial API, on page 271. The only difference is that the new imple-
mentation looks for newline characters. Whenever it finds one, it passes the
current read buffer to the function that is listening for onReadLine events. Note
that more than one line can be transmitted in a single data chunk. Also note
that onReceive checks whether it got data from the correct serial port.

The onReceiveError method also makes sure first that it got error information
for the correct connection. In this case, it dispatches the event to the function
that is listening for onError events.

For our purposes we don’t need a send method, but it doesn’t hurt to add it
for the sake of completeness. This way, you have a SerialDevice class that you
can use in many more projects.

Finally, we need our two helper methods for converting ArrayBuffer objects into
strings and vice versa:

ChromeApps/SerialDevice/js/serial_device.js
SerialDevice.prototype.arrayBufferToString = function(buf) {

var bufView = new Uint8Array(buf);
var encodedString = String.fromCharCode.apply(null, bufView);
return decodeURIComponent(escape(encodedString));

};

SerialDevice.prototype.stringToArrayBuffer = function(str) {
var encodedString = unescape(encodeURIComponent(str));
var bytes = new Uint8Array(encodedString.length);
for (var i = 0; i < encodedString.length; ++i) {

bytes[i] = encodedString.charCodeAt(i);
}
return bytes.buffer;

};

That’s it! We now have a generic class for communicating with serial devices
from a Chrome app. Let’s use it right away and write a small demo application.
This demo will be the simplest serial monitor possible. It will permanently
read data from a serial port and display it in an HTML page. The HTML page
looks as follows:

Appendix 4. Controlling the Arduino with a Browser • 278

report erratum • discuss

http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/js/serial_device.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

ChromeApps/SerialDevice/main.html
<!DOCTYPE html>
<html lang="en">

<head>
<meta charset="utf-8"/>
<title>Serial Device Demo</title>

</head>
<body>

<div id="main">
<p>The Arduino sends:</p>
<p id="output"></p>

</div>
<script src="js/serial_device.js"></script>
<script src="js/arduino.js"></script>

</body>
</html>

In the HTML page, you’ll find a paragraph element with its id attribute set to
output. That’s the element we’ll fill with the data we read from the serial port.
At the end of the document, we include our new JavaScript library for
accessing the serial device. Also, we include a file named arduino.js:

ChromeApps/SerialDevice/js/arduino.js
var arduino = new SerialDevice('/dev/tty.usbmodem24311');

arduino.onConnect.addListener(function() {
console.log('Connected to: ' + arduino.path);

});

arduino.onReadLine.addListener(function(line) {
console.log('Read line: ' + line);
document.getElementById('output').innerText = line;

});

arduino.connect();

Here we create a new SerialDevice object named arduino. Then we add listener
functions for the onConnect and onReadLine events. Both write a message to the
console. The onReadLine listener puts the line it has read into the browser’s
Document Object Model (DOM).

Make sure you use the correct serial port in the first line of arduino.js. Then
connect your Arduino to your computer and upload a sketch that permanently
outputs lines of text on the serial port. You can use the sketch from Building
Your Own Game Controller, on page 106. Start the Chrome app, and you should
see something like the following figure:

report erratum • discuss

Writing a SerialDevice Class • 279

http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/main.html
http://media.pragprog.com/titles/msard2/code/ChromeApps/SerialDevice/js/arduino.js
http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

The Chrome app will update the HTML page whenever it receives a new line
of data.

Isn’t it fascinating how easy it is to combine modern Web technologies with
microcontrollers?

There’s one minor drawback, though. Support for the serial API in the Google
Chrome browser is still a rather new feature. It might happen that your
browser crashes from time to time, especially when you’re starting or stopping
Chrome apps that access the serial port, or when you’re attaching or
detaching devices while the browser is running. Apart from that, everything
runs smoothly and is stable. The situation will probably improve with every
new browser release.

Appendix 4. Controlling the Arduino with a Browser • 280

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

APPENDIX 5

Bibliography
[But09] Paul Butcher. Debug It!: Find, Repair, and Prevent Bugs in Your Code. The

Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2009.

[KR98] Brian W. Kernighan and Dennis Ritchie. The C Programming Language.
Prentice Hall, Englewood Cliffs, NJ, Second edition, 1998.

[Mey97] Scott Meyers. Effective C++: 50 Specific Ways to Improve Your Programs
and Designs. Addison-Wesley Longman, Reading, MA, Second edition,
1997.

[Pin09] Chris Pine. Learn to Program. The Pragmatic Bookshelf, Raleigh, NC and
Dallas, TX, Second Edition, 2009.

[Pla10] Charles Platt. Make: Electronics. O’Reilly & Associates, Inc., Sebastopol,
CA, 2010.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley,
Reading, MA, 2000.

report erratum • discuss

http://pragprog.com/titles/msard2/errata/add
http://forums.pragprog.com/forums/msard2

Index

SYMBOLS
character, specifying ele-

ments, 117

$ character, variable names,
119

$ function
anonymous functions,

124
Breakout clone game,

117, 119, 123–124
passing selectors, 123
passing strings, 119
remote control project,

214
specifying elements, 117

% (modulus operator), 58

& (AND operator), 251

& operator, 47

<< >> bit shift operators, 251

^ (XOR operator), 251

_ (underscore), private in-
stance variables, 65

| (OR operator), 251

~ (not operator), 251

A
A0 constant, 47

AC adapter
connecting, 7–8
image, 7
voltage, 7–8

acceleration
indirect, 110
Nunchuk controller, 147,

150

accelerometers
about, 99
Breakout clone game,

111–124
edge values, 103–104
ideas, 109
images, 100–101
motion-sensing game

controller, 99–110
understanding data, 102–

106
wiring, 100–102

actuators, 3

Adafruit, xix

Adafruit Experimentation Kit
for Arduino, xix

ADXL335 accelerometer,
see accelerometers

alarm projects, see also bur-
glar alarm

beach alarm, 164–172
stop sign project, 98

Amazon, xx

Analog Devices, 100

analog pins, see also digital
input/output pins; pins

about, 8
connecting accelerometer,

101
outputting to serial port,

102
reader example, 255–265
voltage, 88

analog reader example, 255–
265

analog signals
about, 9
TV, 128–129, 131

analogRead, 88

AnalogReader class, 261

AND operator, 251

anode LED connector, 42

Anthros, 230

API keys, 167–168

Arduino
about, xiii
board components, 6–10
board images, 4–6
board options, xvi, 5
clones, 6
configuring, 19
development history, 3–6
identifying type, 19
platform versions, xvi
resources, xiii, xvii, 5
schematic, 4
starter packs, xix

Arduino BT, 227

Arduino Due
double values, 17, 86
features, xvi
IDE version, 10
IO pins, 5
serial ports, 35

Arduino Ethernet, 173

Arduino Galileo, xvi

Arduino IDE
compiling and uploading,

19–22
components, 14–16
Ethernet library, 173
installing, 10–14
managing sketches, 24–

25
preferences, 26–27
toolbar, 14

troubleshooting, 21
verbose output, 26, 249
versions, xvi, 10
as wrapper, 249

Arduino Leonardo, xvi

Arduino LilyPad, 6, 178

Arduino Nano, 5

Arduino programming lan-
guage, 28, 249–252

arduino property, 112

Arduino Uno, xvi, 34

Arduino Yún, xvi, 10

arduino-serial library, 257

Arduino.h file, 64, 140

arduino.js file, 279

_arduinoPort variable, 170

arduino_serial, 257–259

arduinoid.js file, 116

ARM, board options, xvi, 5

arrayBufferToString, 274

ArrayBuffer object, 273, 278

arrays
about, 18
Nunchuk data, 149

art projects, 230

ASCII encoding, 254

Atmel
GNU compiler tools, 249
microcontrollers, 10, 28

atmospheric pressure and
speed of sound, 98

atoi, 220, 229

attach, 58

audio element, 115

AUTH LOGIN, 186

authentication
email from Arduino, 191–

192, 199
email from command-

line, 186
Twitter, 167–168, 181

autoplay attribute, 115

available
blinking LED project, 29
Daytime service project,

177
Morse code generator

project, 70
Nunchuk controller, 151
remote control project,

220

AVR processors
C++ compiler tools, 28

compatibility, xvi
GNU development tools,

249–252

avrdude, 250

axes
accelerometer, 102–103,

105, 110
defining resting point,

112

B
B prefix, 47

backgrounds
Breakout clone game,

119
Google Chrome apps,

269, 271
remote control project,

213

Balance Board, 152

ball element, 115

ballDropped, 123

balls
collision detection in

Breakout clone game,
122–124

creating for Breakout
clone game, 115

moving in Breakout clone
game, 120–122

Base64, 186, 192, 200

baud rate
about, 254
Chrome Serial API, 272
motion-sensing game

controller, 109
PING))) sensor, 80
screen command, 34
serial port and serial

monitor, 29, 35
troubleshooting, 35, 97

beach alarm project, 164–172

bees, 178

begin
controlling status LED

exercise, 29
Ethernet shields, 176
IP addresses, 179
Nunchuk controller, 151
TV thermometer project,

137

BIN format, 31

binary clock, 60

binary constants, 140

binary dice, see dice project

binary operations, 251

binary representation
memory, 88
serial communication, 31
in source code, 47

binary-weighted DAC, 130,
133

bind, 113, 275, 277

bit operations, 251

bit shift operators, 251

bitmap, 137

bitmaps
disadvantages, 161
TV thermometer project,

137

bits
bit operations, 251
masking, 251
serial communication,

253
shifting, 251

blame, 233–234

Blaminatr project, 230–235

blinkenlights, 70

blinking LEDs, see also dice
project

exercises, 36
Hello, World! example,

16, 18–22, 27

blocks, Breakout clone game,
118, 122–124

Bluetooth, 180–181

Boolean operators, 252

boolean values, 17

Botanicalls, 172

Bounce class, 58, 109

Bounce objects, 58

Bounce2 library, 55–58

boundaries, screen, 121,
136, 155

breadboards
connecting, 42
connecting LEDs, 41–45
images, 40
parts list, xx
using, 40–45

breakaway headers, parts list,
xxi

breakout boards
Adafruit Experimentation

Kit for Arduino, xix
parts list, xxi
voltage and connectors,

101

Index • 284

Breakout clone game, 111–
124

collision detection, 122–
124

game logic, 114–124
GameController class, 112–

113
moving objects, 120–122
troubleshooting, 124

bricks, drawing for Breakout
clone game, 118

buffer, 192, 218

bufferUntil, 170

buffer_length, 218

BUFFER_SIZE, 106

buffers
Chrome Serial API, 273
circular buffer, 106
email from Arduino, 192
Morse code generator, 70
motion-sensing game

controller, 105
reading from serial port,

258
remote control project,

218
serial receive buffer size,

34
Twitter temperature

project, 170

burglar alarm, 183–200
email from Arduino, 189–

193
email from command

line, 184–188
exercises, 200
motion detection with PIR

sensor, 193–200
stop sign project, 98
troubleshooting, 200

BurglarAlarm class, 198–200

buttons, see also pushbut-
tons

Nunchuk Z button, 159,
161

remote control project,
214

buzzers, see piezo speak-
ers/buzzers

byte maximum, 20

BYTE modifier, 31

byte variable, 17

bytes
byte maximum, 20
byte representation, 31

memory, 17
sending single, 257

C
C

advanced Arduino pro-
gramming, 249–252

converting graphics to,
141–143

resources, xiv
serial programming, 257–

259

The C Programming Language,
xiv

C++
advanced Arduino pro-

gramming, 249–252
Arduino programming

language, 28
converting graphics to,

141–143
header files, 64
naming sketches, 64
resources, xiv
serial programming, 257–

259

The C++ Programming Lan-
guage, xiv

cable modems, passing IP
addresses, 176

callback functions
Chrome Serial API, 272
remote control project,

214
SerialDevice class, 276–277

cameras, burglar alarm
project, 200

capitalization, changing, 67

carbon resistors, 241

carriage return character
(\r\n), 218

case, changing, 67

cathode LED connector, 42

cellular networks, 180

Celsius
converting to Fahrenheit,

88
thermometer alarm

project, 165
TV thermometer project,

144

CELSIUS constant, 165

CH_LEN, 155

char values, 17–18

check, 199

checkCollisions, 123

check_controls, 158

check_target, 160–161

children, 118

chiptune, 115

Chrome, see Google Chrome
apps; Google Chrome OS

Chrome Serial API, 271–274

chx, 156

chy, 156

circles, Pragduino, 154–155,
160

circular buffer, 106

classes
creating in JavaScript,

275
syntax coloring, 71

clear, 170

clear_screen, 160

clearing
bits, 251
buffer for Twitter temper-

ature project, 170
screens, 160

click, 214

Client, 176

Clock wire (Nunchuk con-
troller), 147

clock, LED, 60

clones
Arduino boards, 6
remote controls, 207–212

CMD_LEN, 209

code
avoiding copying, 55
conventions, xvii, 83
converting graphics to ,

141–143
decoding remote control

codes, 203–207
for this book, xvii

collision detection, Breakout
clone game, 122–124

color
analog video, 129, 131
Breakout clone game,

119
parking-distance control

project, 96
resistance values, 241–

243
syntax coloring, 71, 73

Index • 285

TV thermometer project,
143

Twitter temperature
project, 170

command, 211

command-line
emailing from, 184–188
verbose output, 249

compiling sketches, 19–20,
68

ConfigurationBuilder object, 171

connect, 179, 272, 277

connectionId, 273, 277

const, 17, 83

constants
binary, 140
conventions, 83
defining, 17
header files, 64
vs. numbers, 55
Nunchuk data, 149
syntax coloring, 71

continuous integration sys-
tems, 231

continuous rotation servo
motors, 226

controllers, see microcon-
troller; motion-sensing
game controller; Nunchuk
controller

converting
ArrayBuffer object to string,

273, 278
Celsius to Fahrenheit, 88
duration into length, 82
floating-point numbers to

integers, 86
graphics to code, 141–

143
remote control codes, 220
strings to integers, 229
temperatures to float ob-

jects, 171
UTF-8 to UTF-16, 274

copying, code, 55

create_target, 157

cross-compiling, 28, 249

crosshairs, Pragduino, 154–
155, 160

CSS, see stylesheets

ctype.h, 64

cube, LED, 59

current basics, 239–243

current_temperature, 137

cursors, moving in TV ther-
mometer project, 137

D
DAC (Digital-to-Analog Con-

verter), 130–133

dah, 66

dashboard, parking-distance
control project, 92–97

data, encoding, 88

data bit, 254

DATA command, 187

data loss, serial communica-
tions, 34

data structures, jQuery li-
brary, 116

data types, 17, 88

Data wire (Nunchuk con-
troller), 147

Daytime service project, 173–
181

DC motors, 226

debouncing, 52, 55–58, 109,
159

DEC format, 31

decimal dice, 60

decimal numbers, 31

decode, 206

decode_byte, 150–151

decode_result, 206

decoding
Nunchuk controller, 150–

151
remote control codes,

203–207

degrees, controlling servo
motors, 229

delay, 19

delay_frame, 158

delays
blinking Hello, World! ex-

ample, 19
burglar alarm project,

199
debouncing, 58
distance sensing project,

89
game controller, 106
Pragduino game, 158

delete, 250

DemoNTSC, 134

DemoPAL, 134

desoldering, 247

desoldering braid, 247

desoldering pump, 247

DHCP (Dynamic Host Config-
uration Protocol)

burglar alarm, 200
Daytime service project,

177–180
expense, 175

dice project, 39–60
adding game, 55–59
adding pushbutton, 48–

55
binary die creation, 45–

47
exercises, 60
LED map, 45
troubleshooting, 59
using breadboards, 40–

45

dice reader, 59

Digi-Key, xx

digital input/output pins, see
also analog pins; pins

serial communication, 35
state, 16, 82
uses, 8

digital signals, about, 9

Digital-to-Analog Converter
(DAC), 130–133

digitalRead, 204

digitalWrite, 18

DIGITs array, 65, 67

directories
file management, 24–25
libraries, 67, 71

disabling, serial communica-
tion, 35

dispatch, 277

distance sensing project, 77–
98

connecting sensor, 78–84
dashboard, 92–97
floating-point numbers,

84–86
temperature sensor, 86–

92
troubleshooting, 97

dit, 66

DIT_LENGTH constant, 69

<div> elements, Breakout
clone game, 115, 118

DNS (Domain Name System)
about, 175

Index • 286

burglar alarm, 200
Daytime service project,

177–180

Document Object Model
(DOM), 279

documentation, publishing li-
braries, 72

DOM (Document Object Mod-
el), 279

Domain Name System (DNS),
see DNS (Domain Name
System)

domain names, see DNS (Do-
main Name System)

DONE state, 156

double, 17, 86

double quotes, strings, 18

double-include prevention
mechanism, 63, 149

draw, 170

drawPlayfield, 118

draw_circle, 139, 160

draw_column, 161

draw_crosshairs, 160–161

draw_rect, 138

draw_row, 161

drawing images, 141, 161,
see also graphics

drivers, installing, 11–14

dump, 206

Dynamic Host Configuration
Protocol (DHCP), see DHCP
(Dynamic Host Configura-
tion Protocol)

dynamic memory manage-
ment, 250

E
e-textiles, 178

each, 124

edge values, finding, 103–104

EHLO, 186, 192

electrical circuits, 239

electron cannon, 128

electronics basics, 239–243

email
from Arduino, 189–193,

199
attributes, 187, 189, 192
burglar alarm project,

183–200

from command line, 184–
188

interactive T-shirts, 178

emulator, remote control
project, 223

enableIRIn, 206

encoding sensor data, 88

ergonomics, 106

error listener, Google Chrome
apps, 277

error messages, 21

Ethernet shields
about, 173
Adafruit Experimentation

Kit for Arduino, xix
connecting PIR sensor,

197
images, 173
networking with, 173–

181
parts list, xxi
remote control project,

216–223
troubleshooting, 181

EthernetClient class, 192

EthernetClient object, 176

EthernetServer class, 220

evaporation measuring
project, 152

Event class, 276

event handlers, 276

exception handling, 250

exercises
accelerometers, 124
blinking LED project, 22,

36
burglar alarm project,

200
dice project, 60
distance sensing project,

98
Morse code, 73
motion-sensing game

controller, 110
networking, 181, 200,

235
Nunchuk controller, 162
remote control project,

223
sensors, 98
serial communication, 36
servo motors, 235
video signals, 144

Experimentation Kit for Ar-
duino, xix

extensions, unpacking, 270

extern, 139

EyeWriter, 148

F
Fahrenheit

converting Celsius to, 88
thermometer alarm

project, 165
TV thermometer project,

144

Favicon, 221

file management
libraries, 73
sketches, 24–25

first, 123

flash memory
image data, 140
Pragduino game, 159

flattening jitter, 103–104, 107

flickering
LEDs during uploading,

20
preventing video, 158

Flickr photo set, xvii

float
converting temperatures,

171
memory, 17, 86
rounding numbers, 85,

92

floating-point numbers
converting to integers, 86
distance sensing project,

84–86
mapping, 138
memory, 17, 84, 86
rounding, 85, 92
storing, 17

_font variable, 170

fontALL.h, 136

fonts
TV thermometer project,

136–137
TVout library, 136–137
Twitter temperature

project, 170

full-duplex communication,
253

functions
about, 18
mandatory, 17–18
syntax coloring, 71

Index • 287

G
game console, Nunchuk con-

troller, 153–162

game controller, see motion-
sensing game controller

Game object, 117–118

gameLoop, 120, 124

game_over, 115, 159

GameController class, 112–113

GameController object, 117

Gameduino 2 shield, 125

Gameduino shield, 125

games
Breakout clone game,

111–124
dice, 55–59
ideas, 125
motion-sensing con-

troller, 99–110
Nunchuk video game

console, 153–162
Pragduino, 153–162
resources, 162

GameStates, 117

GET, 219–220

getBytes, 192

getElementById, 96

get_axis, 105

get_position, 232

get_temperature, 88

gets, 262

Gibb, Alicia, 230

GitHub, 72

GND pins, 8

GNU development tools, 249–
252

Google Chrome apps
about, 267–268
Breakout clone game,

112–124
controlling Arduino with,

267–280
minimal app project,

269–271
parking-distance control

project, 92–97, 144
remote control project,

212–223
resources, 268, 275
Serial API, 271–274
SerialDevice class, 274–280
starting, 270
store, 268–269

Google Chrome OS, 267

Google Code, 72

graphics
converting to code, 141–

143
editors, 141
flickering prevention, 158
TV thermometer project,

135, 137–138
TVout library, 134, 139–

143

ground pins, 8

ground wires, 28

grounding
breadboards, 41
multiple LEDs, 45
serial communication,

253

GSM shield, 180

guess button, dice game, 55–
59

guess variable, 58

H
Hackvision, 125

handleMessageState, 120

handle_command, 219–220

handle_guess_button, 58

handle_start_button, 58

handshake, 151

header files
C++, 64
Morse Code project, 63–

64
TV thermometer project,

136, 139

headers
Adafruit Experimentation

Kit for Arduino, xix
parts list, xxi

height
Breakout clone game,

117
image data, 141
Pragduino, 155
TV thermometer project,

136–137, 141

HEIGHT constant, 155

Hello, World! examples
blinking LEDs, 16, 18–

22, 27
Morse code, 64, 67

HELO, 188, 192

Help menu, 16

helping hand, 245

HEX format, 31

hexadecimal numbers, 31

hits, 156, 161

Hoefer, Steve, 59

hooray, 58

hourglass random number
generator, 48, 234

HTML, see also Google
Chrome apps; web browser.

browser games, 114–124
remote control project,

213–215

HTTP, see also Google
Chrome apps; web browser

about, 219
remote control project,

216–223

humidity and speed of sound,
98

I
I2C (Inter-Integrated Circuit)

protocol, 147, 151

id attribute, 115, 279

#ifdef, 165

#ifndef, 149

image variable, 143

ImageMagick, 141

inXRange, 123

inYRange, 123

index, 70

indirect acceleration, 110

infrared LEDs
Adafruit Experimentation

Kit for Arduino, xix
connecting, 207
parts list, xxi
remote control project,

207–212
troubleshooting, 223

infrared light, 193, 202

infrared receivers, see also re-
mote control project

about, 203
Adafruit Experimentation

Kit for Arduino, xix
Blaminatr project, 235
connecting, 204
ideas, 222
images, 202–203
troubleshooting, 223

Index • 288

infrared sensors, see also PIR
sensors

distance measuring, 98
parts list, xxi

_infrared_sender variable, 217

InfraredProxy class, 217–223

initGame, 118

init_game, 157

innerText property , 96

ino extension, 24

INPUT constant, 18

input pins, see analog pins;
digital input/output pins;
pins

input_available, 211, 256

_input_pin variable, 196

INSTALL file, 72

installing
Arduino IDE, 10–14
directions for libraries, 72
drivers, 11–14

int variables
about, 17
converting to, 220

integers
converting floating-point

numbers to, 86
converting from strings,

229
converting remote control

codes, 220
memory, 17, 84
scaled integer values, 92

Inter-Integrated Circuit (I2C)
protocol, 147, 151

interactive T-shirts, 178

interfacing, 128

Internet, see also Google
Chrome apps; web browser

relaying sensor data
through PC, 164–172

using Ethernet shield,
173–181

Internet of Things (IoT), 166,
181

interval, 58

intro, 159

INTRO state, 156

inverting bits, 251

IoT (Internet of Things), 166,
181

IP addresses
assigning manually, 175
DHCP and DNS, 177–180

domain names into, 175
routers and cable

modems, 176
SMTP, 187, 191
troubleshooting, 181

IPAddress class, 175

ir_receiver, 206

IRemote library, 204–212,
217–223

IRrecv object, 206

IRsend object, 209, 217

_isCelsius variable, 170

isalpha, 67

J
Java

JVM and Arduino IDE in-
stallation, 13

Processing and, 267
serial programming, 259–

262
Twitter libraries, 168

Java Communications API,
259

Java Virtual Machine, Ar-
duino IDE installation, 13

java-simple-serial-connector
(jSSC), 259–262

JavaScript
Breakout clone game,

111–124
Google Chrome apps,

271, 273
JSON, 269
parking-distance control

project, 92–97
SerialDevice class, 274–280

Jenkins, 231

jitter, flattening, 103–104,
107

joystick, Nunchuk controller,
147

jQuery library
Breakout clone game,

116–124
remote control project,

214

JSON, 269

jSSC (java-simple-serial-con-
nector), 259–262

jumper wires, parts list, xx

jumpers, PIR sensors, 195

K
KEYWORD1 type, 71

KEYWORD2 type, 71

Kurt, Tod E., 257

L
last_measurement, 137

lawnmower, remote control,
222

Learn to Program, xiv

LED_PIN, 17

led_state variable, 51–53

LedDevice, 74

LEDs, see also dice project;
infrared LEDs

anode/cathode connec-
tors, 42

blinking Hello, World! ex-
ample, 16, 18–22, 27

brightness, 60
calculating resistance,

240
clock, 60
connecting to bread-

boards, 41–45
controlling status LED

exercise, 29–36
data sheet, 240
flickering during upload-

ing, 20
grounding multiple, 45
LED cube, 59
lights data structure, 96
Morse code generator

project, 61–73
parts list, xx
voltage, 240

left attribute, 121

Lego/Arduino controller, 125

LETTERS array, 65, 67

LG, 209

libraries
compiling, 68
example sketches, 25
folders, 73
locations, 67
publishing, 71–73
syntax coloring, 71
troubleshooting, 68, 73

licenses, 71

lifecycle management, 269

light switch, pushbutton, 50–
53

lights data structure, 96

Index • 289

Linux
Arduino IDE installation,

14
Infrared Remote Control

project, 203
serial terminals, 34

listener functions, Google
Chrome apps, 270, 273,
277

LITERAL1 type, 71

lives ID, 118

long
converting to, 92, 220
memory, 17

loop
mandatory function, 18
state and, 51

lowercase, changing to upper-
case, 67

M
mac, 175

MAC address
Ethernet shields, 175
troubleshooting, 181
whitelists, 181

Mac OS X
Arduino IDE installation,

13
security and remote con-

trol project, 223
serial terminals, 34

MAIL FROM:, 187

main, 250, 259, 261

Make: Electronics, 243

Maker Shed, xix

manifest.json, 93, 212, 269

manifest_version, 269

map_float, 138

marble maze, 110

masking bits, 251

master/slave data bus,
Nunchuk controller, 147,
151

max, 85

MAX_LIVES, 117

MAX_MESSAGE_LEN, 69

MAX_TARGET, 155

MAX_TEMP, 136

MAX_WORKING_TEMP, 169

maze, marble, 110

measure_distance, 85

members, 234

_members variable, 232

memory
data types, 17, 88
dynamic memory manage-

ment, 250
flickering prevention, 158
floating-point numbers,

17, 84, 86
image data, 140
Pragduino game, 159

message_text, 70

metal resistors, 241

microcontroller
about, 10, 28
identifying type, 19

MICROSECONDS_PER_CM constant,
92

microseconds_per_cm function, 92

microseconds_to_cm, 82, 85

millis, 92, 157

MIN_TEMP, 136

Mitsubishi, 209

modulus (%) operator, 58

Morse code
blinking LED project, 22
building generator, 62–64
example sketches, 67–71
exercises, 73
generator project, 61–73
implementing generator,

64
language basics, 62
outputting symbols, 65–

67
publishing library, 71–73
resources, 62
troubleshooting, 68, 73

motion detection, PIR sensor
burglar alarm, 193–200

motion-sensing game con-
troller, 99–110

Breakout clone game,
111–124

building controller, 106–
109

connecting accelerometer,
100–102

edge values, 103–104
ideas, 125
troubleshooting, 110
understanding accelerom-

eter data, 102–106

motion_detected, 196

motor shields, 234

MOTOR_PIN, 234

motors, see also servo motors
about, 226
ideas, 234
limits, 234
troubleshooting, 235
types, 226

mouse, accelerometer exer-
cise, 124

Mouser, xx

move_crosshairs, 160

moving
bits, 251
objects in Breakout clone

game, 120–122
objects in Pragduino

game, 160

music, Breakout clone game,
115

my_ip variable, 175

N
\n (newline character), 218

name, 269

naming
Google Chrome apps, 269
sketches, 24, 62, 64
syntax coloring, 71
troubleshooting, 73
variables and $ character,

119

networking, 163–181
alternative technologies,

180
Blaminatr project, 235
burglar alarm project,

183–200
Daytime service project,

173–181
exercises, 181, 200, 235
ideas, 178
remote control project,

216–223
troubleshooting, 180, 200
using Ethernet shield,

173–181
using PC to transfer sen-

sor data, 164–172

new, 250

New button, 15

“New Media Art, Design, and
the Arduino Microcon-
troller”, 230

NEWLINE, 69

newline character (\n), 218

Nintendo Nunchuk,
see Nunchuk controller

Index • 290

noTone, 162

not operator, 251

NTSC, 134, 144

NULL pointer, 232

null-termination, 70, 218

NUM_AXES, 105

_num_members variable, 232

numbers, see also floating-
point numbers

vs. constants, 55
generating random, 47–

48, 234
numbering systems, 31

Nunchuk controller
Adafruit Experimentation

Kit for Arduino, xix
Breakout clone game,

113
connecting, 146–153
creating Nunchuk class,

148–151
data communication and

interpretation, 147–153
exercises, 162
images, 146
parts list, xxi
Pragduino game, 153–

162
remote control project,

223
tinkering, 145–162
troubleshooting, 162
video game console, 153–

162

NUNCHUK_DEVICE_ID, 151

O
OAuth access token, 167–

168, 181

OCT format, 31

octal numbers, 31

Ohm, Georg, 240

Ohm’s law, 240

old_button_state, 52

on, 214

onConnect, 96, 279

onConnectComplete, 277

onLaunched, 270

onReadLine
Google Chrome apps,

276–277, 279
motion-detecting game

controller, 113
temperature sensor

project, 96

onReceive, 277

onReceiveError, 278

Open button, 15

openPort, 261

OR operator, 251

Oracle, 259

output, verbose, 26, 249

OUTPUT constant, 18

output pins, see analog pins;
digital input/output pins;
pins

output_code, 66

output_distance, 85

OUTPUT_PIN constant, 69

output_result, 47

output_symbol, 66, 74

P
paddle element, 115

paddles
collision detection in

Breakout clone game,
122–124

creating for Breakout
clone game, 115

moving in Breakout clone
game, 122

PAL, 134, 144

Paperduino, 6

Parallax PING))) sensor,
see PING))) sensor

Parallax PIR sensor, see PIR
sensors

parity bit, 254, 273

parking-distance control
project, 92–97, 144

parseInt, 96

parsing
URL addresses, 219
values into numbers, 96

parts
list for book, xix–xxii
through-hole, 42

passive infrared sensors,
see PIR sensors

PassiveInfraredSensor class, 196–
200

passwords
email from Arduino, 191–

192, 199
email from command-

line, 186

PAUSE, 17

PC, relaying sensor data,
164–172

pde extension, 24

performance
C++, 250
UART devices, 35

Perl, serial programming, 264

permissions option, 269

physical computing, 3, 77

piezo speakers/buzzers
burglar alarm project,

200
connecting, 74
Morse code project, 74
parts list, xxi
Pragduino game, 162

pin parameter, 82

pinMode, 18

pin_name, 256

PING))) sensor
about, 78
Adafruit Experimentation

Kit for Arduino, xix
connecting and using,

78–84
data sheet, 81
distance sensing project,

77–98
floating-point numbers,

84–86
images, 79–81
parts list, xxi
sonar system, 93

pins, see also analog pins;
digital input/output pins

blinking LEDs, 21
connecting accelerometer,

101–102, 105
ground, 8
PING))) sensor, 82
PinMode method, 18
powering from, 8
resources, 18
uses, 7–10

PINS array, accelerometer, 105

PIR sensors
Adafruit Experimentation

Kit for Arduino, xix
burglar alarm project,

193–200
connecting, 195–196
images, 184, 194–195
parts list, xxi
troubleshooting, 200

PIR_INPUT_PIN, 196

Piskel, 141

Index • 291

plant watering, 172

playfield element, 115

playfields, Breakout clone
game, 115, 118, 121

PlayStation Eye, 148

position, 121

_positions variable, 232

power
about, 7
breadboards, 41
external, 8
motors, 235
pins, 8
selection jumper, 7
voltage, 88

Pragduino game, 153–162
definitions, 155–158
game loop, 160–162
state, 155, 158
troubleshooting, 162

preferences, Arduino IDE, 26–
27

print
blinking LEDs project, 30
distance measuring

project, 85
floating-point numbers,

85
TV thermometer project,

137

printPGM, 159

print_ip_address, 179

println, 30, 85

private instance variables, 65

Processing
limitations, 267
Tweeting sensor data,

166, 168–172, 181

PROGMEM, 140

programming
advanced Arduino pro-

gramming, 249–252
Arduino programming

language, 28
resources, xiv

programs, see sketches

Proto shields
Adafruit Experimentation

Kit for Arduino, xix
advantages, 106
images, 100, 108
parts list, xxi

protocol types, infrared sig-
nals, 206, 219

protocols, serial communica-
tion, 253

prototypes, JavaScript, 275,
277

pseudorandom numbers, 47–
48

PSTR, 160

publishing
libraries, 71–73
sensor data, 166

pull-down resistors, 49

pull-up resistors, 49

pulseIn, 82

pushbuttons
adding, 53–54
circuit, 49
connecting, 49
debouncing, 52, 55–58,

109
dice project, 48–55
images, 48
light switch, 50–53
motion-sensing game

controller, 107
parts list, xx
simple program, 49
troubleshooting, 60
using, 48–53

PuTTY, 32

PWR_SEL jumper, 7

pyserial library, 263

Python, serial programming,
263

Q
QUIT, 187

quitting
email from command-

line, 187
screen, 34

quotes
char literals, 17
strings, 18

R
\r\n (carriage return charac-

ter), 218

radius, Pragduino game, 156

RAM, image data, 140

random function, 47–48

random numbers, generating,
47–48, 234

random seed, 48

randomSeed(), 48

raster scan, 128

RCA cable
Adafruit Experimentation

Kit for Arduino, xix
connecting Arduino to

TV, 131–133, 144
images, 128
Nunchuk video game

console, 153
parts list, xxi

RCPT TO:, 187

read
controlling status LED

exercise, 29
Daytime service project,

177
Nunchuk controller, 151
serial programming with

Perl, 265

readBytes, 261

readLine, 261, 276

readStringUntil, 170

read_char_time, 265

read_line, 217, 220

read_response, 191

reader example, analog, 255–
265

readline, 264

README file, 72

receive listener, Google
Chrome apps, 273, 277

receive_from_server, 217, 220

redundancy, 55

remote, 214

remote control lawnmower,
222

remote control project, 201–
223

Blaminatr project, 235
cloning a remote, 207–

212
controlling from browser,

212–223
exercises, 223
grabbing codes, 203–207
ideas, 222
infrared proxy, 216–223
theory, 202
troubleshooting, 223

remote.js, 214

requestFrom, 151

request_data, 150–151

resetMovingObjects, 118

resistance basics, 239–243

Index • 292

resistance values, 241–243

resistors
about, 43, 241–243
brightness, 60
calculating resistance,

240
DAC (Digital-to-Analog

Converter), 130
images, 43, 242
parts list, xx
pull-down vs. pull-up, 49
pushbuttons, 49
RCA cable, 132
troubleshooting, 144

resolution, screen, 136

resources
Arduino, xiii, xvii, 5
C, xiv
C++, xiv
code for this book, xvii
games, 162
Google Chrome apps,

268, 275
Morse code, 62
PING))) sensor, 81
pins, 18
programming, xiv
resistor values, 243
soldering, 248
Wire library, 151

resting point, 112

resume, 206

rmagick library, 141

Robotics Shield Kit, 234

robots, 234

rounding
floating-point numbers,

85, 92
temperature value, 96

routers, networking, 176, 181

row element, 118

Ruby
converting graphics to

code, 141
serial programming, 262

RUNNING state, 156

RX LED, 20

RX line, 28

RXTX project, 259

S
safety

soldering, 244
wire cutters, 243

samples, 9

sampling, 9

sampling rate, 9

sand timer, 48, 234

Sanyo, 209

Save button, 15

saving, sketches, 15, 24

SCALE_HEIGHT, 137

SCALE_WIDTH, 137

SCALE_X_MIN, 136

SCALE_Y_MAX, 136

SCALE_Y_MIN, 136

scaled integer values, 92

scaled_value, 92

score ID, 118

screen command, 34

SCREEN_HEIGHT, 136

SCREEN_WIDTH, 136

screens
boundaries, 121, 136,

155
clearing, 160
resolution, 136

security, remote control
project, 223

select_font, 137

selectors, 123

send, 278

send_alarm, 198

send_command, 209

send_email, 192

send_ir_data, 218, 220

send_line, 192

send_message, 63, 66

sensors, see also distance
sensing project; tempera-
ture sensors; PING))) sen-
sor; PIR sensors; ultrasonic
sensors

about, 3, 77–78
connecting analog, 8
encoding data, 88
exercises, 98
ideas, 97
publishing data, 166
silly string shooter, 97
sonar system, 93
state, 82
troubleshooting, 97

Serial class
controlling status LED

exercise, 29–36
Morse code generator

project, 69–71

serial communication
about, 28, 253–254
advanced programming,

253–265
analog pin reader exam-

ple, 255–265
Chrome Serial API, 271–

274
disabling, 35
exercises, 36
troubleshooting, 35, 97
using serial ports, 28–36

serial monitor
controlling status LED

exercise, 29–31
Newline setting, 70
No line ending setting, 30
Serial Monitor button, 15

serial permissions option, 269

serial ports, see also serial
communication

Breakout clone game,
117

configuring Arduino IDE,
19

connecting PC, 164
controlling status LED

exercise, 29–36
Ethernet shields, 176
Morse code generator

project, 69–71
multiple, 35
serial monitor, 15
serial programming with

C/C++, 257
SMTP, 186, 191
troubleshooting, 21, 97,

181
using, 28–36

serial terminals, alternative,
32–34

serialEvent
about, 256
analog pin reader exam-

ple, 256
Morse code exercise, 74
remote control project,

211
Twitter temperature

project, 171

SerialDevice class
controlling Arduino with

browser, 274–280
GameController class, 112–

113

Index • 293

parking-distance control
project, 96

remote control project,
214

serialport gem, 262

serialport_close, 257

serialport_flush, 258

serialport_init, 257

serialport_write, 257

serialport_writebyte, 257

SerialPortEventListener interface,
261

Servo library, 229

servo motors, 225–235
about, 226
Blaminatr project, 230–

235
connecting, 227
ideas, 234
images, 225–226
moving, 228–230
parts list, xxi
troubleshooting, 235
voltage, 227

set_cursor, 137

setup, 17–18

shaft, motor, 228

shields, see also Ethernet
shields; Proto shields

advantages, 106
game controllers, 125
motor shields, 234
Wi-Fi, 180

shifting, bits, 251

shortcuts, toolbar, 14

signed values, shifting, 252

silly string shooter, 97

SIM card, 180

Simple Mail Transfer Protocol,
see SMTP

single quotes, char literals, 17

size
buffers, 106
byte representation, 31
DHCP and DNS support,

180
sketches, 20

sketches
compiling, 19–20
creating, 15, 24
examples, 25
managing in Arduino

IDE, 24–25
naming, 24, 62, 64

saving, 15, 24
size, 20
uploading, 19–22

slave/master data bus,
Nunchuk controller, 147,
151

SMD (surface-mounted de-
vices), 42

Smith, Alex, 115

SMTP
about, 185
address, 187, 191
burglar alarm, 197–200
email from Arduino, 189–

193
email from command

line, 184–188
troubleshooting, 187

SMTP2GO, 185

SmtpService class
burglar alarm, 197–200
email from Arduino, 189–

193

sockets, Arduino, see analog
pins; digital input/output
pins; pins

sockets, breadboard, 41

SoftwareSerial library, 35

solder
images, 244
parts list, xxii

solder sucker, 247

soldering
basics, 239, 243–248
desoldering, 247
parts list, xxii, 243
troubleshooting, 110, 246

soldering irons
images, 244
parts list, xxii, 243

sonar system, 93

sound
converting to distance, 82
speed of, 86, 98

sound effects, Pragduino
game, 162

spam, 185

SparkFun, xx

SpeakerDevice, 74

speakers, see piezo speak-
ers/buzzers

SPI library, 175

sponges, xxii, 244, 246

SRAM, 140

Standard Template Library
(STL), 250

start bit, 254

start_game, 159

starter packs, xix

STARTING state, 156

state
bits during serial commu-

nication, 253
Breakout clone game,

117, 120, 123
dice project, 51–53, 58
digital pins, 82
Pragduino game, 155–

156, 158, 160
sensors, 82

statistics, game, 115, 118

stats element, 115

status LED, controlling exer-
cise, 29–36

stepper motors, 226

STL (Standard Template Li-
brary), 250

stop, 177

stop bit, 254, 273

stop sign burglar alarm, 98

strcmp, 232

strings
about, 18
converting ArrayBuffer ob-

ject, 273, 278
converting to integers,

229
email attributes, 189,

192
flash memory, 160
HTML code, 119
IP addresses, 179
Morse code exercise, 74
null-termination, 70, 218
parsing, 219
serial programming with

C/C++, 257
serial programming with

Java, 261

strsep, 219

strtoul, 220

stylesheets
accessing with jQuery,

117
Breakout clone game,

115, 117

Index • 294

dashboard for distance-
measuring project, 95

remote control project,
215

Super Mario Bros. clone, 125

SUPPLY_VOLTAGE, 88, 136, 165

surface-mounted devices
(SMD), 42

switch statement, 158

syntax coloring, 71, 73

T
T-shirts, interactive, 178

target_count, 156

target_creation, 156

target_hit, 161

TARGET_LIFESPAN, 155

target_r, 156

target_x, 156

target_y, 156

targets, Pragduino game,
155–156, 161

Team class, 231–234

telegraph, 70

Telegraph class
building Morse code gen-

erator, 62–64
example Morse code

sketches, 67–71
implementing Morse code

generator, 64
installing and using, 67–

71
outputting Morse code,

65–67
publishing Morse code

generator library, 71–
73

telegraph.h, 64

telnet
Daytime service, 173
email from Arduino, 189–

193
email from command

line, 185–188

Temboo, 166, 181

TEMP_SENSOR_PIN, 136

temperature, soldering, 246

temperature sensors
Blaminatr project, 235
connecting, 87
dashboard display, 95
measuring distance, 77,

86–92

parts list, xxi
TV thermometer project,

134–144
tweeting data through

PC, 164–172

_temperature variable, 170

text, 118

thermometer projects
Blaminatr project, 235
TV thermometer project,

134–144
tweeting data through

PC, 164–172

thermometer variable, 139

thermometer.h, 136, 139

this keyword, 275

threshold, 112

through-hole parts, 42

time_server, 179

timeout parameter, 82

timeouts
sensor pulses, 82
serial programming with

Perl, 265

timestamps
burglar alarm, 200
TV thermometer project,

137

tinning, 246

TMP36 temperature sensor,
see temperature sensors

toCharArray, 192

tone, 162

toolbar, 14

top attribute, 121

toupper, 67

traffic light project, 231

troubleshooting
Arduino type, 21
baud rate, 35, 97
Blaminatr project, 235
blinking LED project, 21
Breakout clone game,

124
burglar alarm project,

200
compiling and uploading,

21
dice project, 59
distance sensing project,

97
Ethernet shields, 181
infrared LEDs and re-

ceivers, 223

libraries, 68, 73
Morse code project, 68,

73
motion-sensing game

controller, 110
motors, 235
networking, 180, 200
Nunchuk controller, 162
PIR sensors, 200
pushbuttons, 60
remote control project,

223
resistors, 144
sensors, 97
serial communication,

35, 97
serial ports, 21, 181
SMTP, 187
soldering, 110, 246
syntax coloring, 73
TV and video signals, 143
wires, 60

TTL Serial Camera, 200

TV, see also remote control
project

analog video, 128
connecting to Arduino,

131–133
DAC (Digital-to-Analog

Converter), 130–133
generating signals

project, 127–144
thermometer project,

134–144
troubleshooting, 143
using TVout library, 133–

144

TV class, 137

tv object, 209, 211

TVout library
exercises, 144
generating video signals

project, 133–144
graphics, 134, 139–143
Pragduino game, 153–

162
sound support, 162

TVout.h, 136

TvRemote class, 207–212

TvRemote object, 211

tweetAlarm, 171

Tweeting Vending Machine,
172

TWI (Two-Wire Interface),
147, 151

Index • 295

Twitter
registering applications,

167–168
sensor data with PC,

164–172
troubleshooting, 181
Tweeting Vending Ma-

chine, 172
Tweeting with Processing,

166, 168–172, 181

Twitter4J, Tweeting sensor
data, 168–172

TwitterFactory, 171

Two-Wire Interface (TWI),
147, 151

TX LED, 20

TX line, 28

type parameter, 82

U
UART devices, 35

Uint8Array object, 274

ultrasonic sensors
about, 78
connecting and using,

78–84
distance sensing project,

77–98
floating-point numbers,

84–86
ideas, 97
silly string shooter, 97

underscores, private instance
variables, 65

Unicode, 170

Universal Asynchronous Re-
ceiver/Transmitter (UART)
devices, 35

universal remote, see remote
control project

unpacking extensions, 270

unsigned int, 17

unsigned long, 17

unzipped applications, 270

update, 58

updateStatistics, 118

updateStatus, 171

updateUI, 96

update_game, 160

Upload button, 15, 20

uploading
sketches, 19–22
sketches to board, 15

uppercase, changing from
lowercase, 67

URLs, remote control project,
216, 219

USB cables
connecting, 6
images, 4
parts list, xx

USB connector, uses, 7

usernames
email from Arduino, 191–

192, 199
email from command-

line, 186

UTF-16, 274

UTF-8, 274

V
variable-width pulses, 78, 81

variables, private instance, 65

velocity
Breakout clone game,

117, 121
Pragduino game, 156

verbose output, 26, 249

Verify button, 14, 20

version, 269

versions
Arduino IDE, xvi, 10
Arduino platform, xvi
Google Chrome apps, 269

video game console, Nunchuk
controller, 153–162

Video Game Shield, 125

video signals project, 127–144
analog TV theory, 128
connecting Arduino to

TV, 131–133
DAC, 130–133
troubleshooting, 143
TV thermometer project,

134–144
using TVout library, 133–

144

Vin pin, 8, 101, 227

void, 17–18

voltage
about, 239–243
AC adapter, 7–8
analog pins, 88
analog video color, 129,

131
breakout boards, 101
calculating output, 131

DAC (Digital-to-Analog
Converter), 130

defined, 240
LEDs, 240
pins, 8
power supply, 88
serial communication,

253
servo motors, 227
temperature sensor, 165
TV thermometer project,

136
USB port, 7

voltage drop, 241

vx, 121

vy, 121

W
wearables, 178

web browser
Breakout clone game,

111–124
Chrome Serial API, 271–

274
controlling Arduino with,

267–280
minimal app project,

269–271
networking project ideas,

181
remote control project,

212–223
SerialDevice class, 274–280

weight and motors, 235

whitelists, 181

Wi-Fi networking, 180–181

Wi-Fi shields, 180

width
Breakout clone game,

117
image data, 141
Pragduino, 155
TV thermometer project,

136–137, 141

WIDTH constant, 155

Wii applications, 152, 162

Wii Balance Board, 152

Wii Motion, 162

Windows
Arduino IDE installation,

10–13
serial terminals, 32

winner element, 115

wire cutters, using, 243

Wire library, 147, 150–153

Index • 296

wires
parts list, xx
troubleshooting, 60
using wire cutters, 243

write
controlling servo motors,

229
controlling status LED

exercise, 31
serial communication

with Python, 264
serial communication

with Ruby, 262

writeString, 261

X
x-axis

accelerometer, 102–103,
105, 110

defining resting point,
112

Nunchuk controller, 147,
150

x-coordinates
collision detection, 123
moving objects, 121
Pragduino game, 156
TV thermometer project,

136

XBee, 178, 181

Xively, 166, 181

XOR operator, 251

Y
y-axis

accelerometer, 102–103,
105, 110

Nunchuk controller, 147,
150

y-coordinates
collision detection, 123
moving objects, 121
Pragduino game, 156
TV thermometer project,

136

Z
Z button

debouncing, 159
Praguino game, 161

z-axis
accelerometer, 102–103,

105, 110
Nunchuk controller, 147,

150

zero byte, terminating strings,
18, 218

ZigBee, 180

zip archives, 72, 269

Index • 297

Raspberry Pi and PC’s
If you like the Arduino, you might really love the extra horsepower of the Raspberry Pi! And
for top-performance, build your own PC from scratch.

Raspberry Pi: A Quick-Start Guide (2nd edition)
The Raspberry Pi is one of the most successful open
source hardware projects ever. For less than $40, you
get a full-blown PC, a multimedia center, and a web
server—and this book gives you everything you need
to get started. You’ll learn the basics, progress to con-
trolling the Pi, and then build your own electronics
projects. This new edition is revised and updated with
two new chapters on adding digital and analog sensors,
and creating videos and a burglar alarm with the Pi
camera. Printed in full color.

Maik Schmidt
(176 pages) ISBN: 9781937785802. $22
https://pragprog.com/book/msraspi2

Build an Awesome PC, 2014 Edition
Custom-build your own dream PC, have fun doing it,
and save yourself a lot of money in the process. This
book will give you the confidence to buy the best-of-
class components and assemble them with clear, step-
by-step instructions. You’ll build your own PC capable
of effortlessly running the most graphic and CPU-inten-
sive games, graphics software, and programming
compilers available today. And because it’s a PC that
you built yourself, you’ll be able to keep it up to date
with the latest hardware innovations.

Mike Riley
(119 pages) ISBN: 9781941222171. $17
https://pragprog.com/book/mrpc

https://pragprog.com/book/msraspi2
https://pragprog.com/book/mrpc

The Joy of Math and Healthy Programming
Rediscover the joy and fascinating weirdness of pure mathematics, and learn how to take
a healthier approach to programming.

Good Math
Mathematics is beautiful—and it can be fun and excit-
ing as well as practical. Good Math is your guide to
some of the most intriguing topics from two thousand
years of mathematics: from Egyptian fractions to Tur-
ing machines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical compu-
tation. If you’ve ever wondered what lay beyond the
proofs you struggled to complete in high school geom-
etry, or what limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

The Healthy Programmer
To keep doing what you love, you need to maintain
your own systems, not just the ones you write code
for. Regular exercise and proper nutrition help you
learn, remember, concentrate, and be creative—skills
critical to doing your job well. Learn how to change
your work habits, master exercises that make working
at a computer more comfortable, and develop a plan
to keep fit, healthy, and sharp for years to come.

This book is intended only as an informative guide for
those wishing to know more about health issues. In no
way is this book intended to replace, countermand, or
conflict with the advice given to you by your own
healthcare provider including Physician, Nurse Practi-
tioner, Physician Assistant, Registered Dietician, and
other licensed professionals.

Joe Kutner
(254 pages) ISBN: 9781937785314. $36
https://pragprog.com/book/jkthp

https://pragprog.com/book/mcmath
https://pragprog.com/book/jkthp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/msard2
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/msard2

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/msard2
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/msard2
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book
	What’s in This Book
	Arduino Uno and the Arduino Platform
	Code Examples and Conventions
	Online Resources

	The Parts You Need
	Starter Packs
	Complete Parts List

	Part I—Getting Started with Arduino
	1. Welcome to the Arduino
	What You Need
	What Exactly Is an Arduino?
	Exploring the Arduino Board
	Installing the Arduino IDE
	Meeting the Arduino IDE
	Hello, World!
	Compiling and Uploading Programs
	What If It Doesn’t Work?
	Exercises

	2. Creating Bigger Projects with the Arduino
	What You Need
	Managing Projects and Sketches
	Changing Preferences
	Using Serial Ports
	What If It Doesn’t Work?
	Exercises

	Part II—Eleven Arduino Projects
	3. Building Binary Dice
	What You Need
	Working with Breadboards
	Using an LED on a Breadboard
	First Version of a Binary Die
	Working with Buttons
	Adding Your Own Button
	Building a Dice Game
	What If It Doesn’t Work?
	Exercises

	4. Building a Morse Code Generator Library
	What You Need
	Learning the Basics of Morse Code
	Building a Morse Code Generator
	Fleshing Out the Morse Code Generator’s Interface
	Outputting Morse Code Symbols
	Installing and Using the Telegraph Class
	Publishing Your Own Library
	What If It Doesn’t Work?
	Exercises

	5. Sensing the World Around Us
	What You Need
	Measuring Distances with an Ultrasonic Sensor
	Increasing Precision Using Floating-Point Numbers
	Increasing Precision Using a Temperature Sensor
	Creating Your Own Dashboard
	What If It Doesn’t Work?
	Exercises

	6. Building a Motion-Sensing Game Controller
	What You Need
	Wiring Up the Accelerometer
	Bringing Your Accelerometer to Life
	Finding and Polishing Edge Values
	Building Your Own Game Controller
	More Projects
	What If It Doesn’t Work?
	Exercises

	7. Writing a Game for the Motion-Sensing Game Controller
	Writing a GameController Class
	Creating the Game
	What If It Doesn’t Work?
	Exercises

	8. Generating Video Signals with an Arduino
	What You Need
	How Analog Video Works
	Building a Digital-to-Analog Converter (DAC)
	Connecting the Arduino to Your TV Set
	Using the TVout Library
	Building a TV Thermometer
	Working with Graphics in TVout
	What If It Doesn’t Work?
	Exercises

	9. Tinkering with the Wii Nunchuk
	What You Need
	Wiring a Wii Nunchuk
	Talking to a Nunchuk
	Building a Nunchuk Class
	Using Our Nunchuk Class
	Creating Your Own Video Game Console
	Creating Your Own Video Game
	What If It Doesn’t Work?
	Exercises

	10. Networking with Arduino
	What You Need
	Using Your PC to Transfer Sensor Data to the Internet
	Registering an Application with Twitter
	Tweeting Messages with Processing
	Communicating Over Networks Using an Ethernet Shield
	Using DHCP and DNS
	What If It Doesn’t Work?
	Exercises

	11. Creating a Burglar Alarm with Email Notification
	What You Need
	Emailing from the Command Line
	Emailing Directly from an Arduino
	Detecting Motion Using a Passive Infrared Sensor
	Bringing It All Together
	What If It Doesn’t Work?
	Exercises

	12. Creating Your Own Universal Remote Control
	What You Need
	Understanding Infrared Remote Controls
	Grabbing Remote Control Codes
	Cloning a Remote
	Controlling Infrared Devices Remotely with Your Browser
	Building an Infrared Proxy
	What If It Doesn’t Work?
	Exercises

	13. Controlling Motors with Arduino
	What You Need
	Introducing Motors
	First Steps with a Servo Motor
	Building a Blaminatr
	What If It Doesn’t Work?
	Exercises

	Part III—Appendixes
	A1. Electronics and Soldering Basics
	Current, Voltage, and Resistance
	Electrical Circuits
	Learning How to Use a Wire Cutter
	Learning How to Solder
	Learning How to Desolder

	A2. Advanced Arduino Programming
	The Arduino Programming Language
	Bit Operations

	A3. Advanced Serial Programming
	Learning More About Serial Communication
	Serial Communication Using Various Languages

	A4. Controlling the Arduino with a Browser
	What Are Google Chrome Apps?
	Creating a Minimal Chrome App
	Starting the Chrome App
	Exploring the Chrome Serial API
	Writing a SerialDevice Class

	A5. Bibliography

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

