

Praise for Programming Your Home

Mike has a broad technology experience base that puts all the pieces of some

remarkable projects together. It’s amazing that he makes it all so easy and afford-

able. Don’t miss all that can be learned from this gem.

➤ Michael Bengtson, Consultant

The Web-Enabled Light Switch project gave my family convenience and security

options and enhanced my knowledge of RS-232 communications. It is nice to be

able to switch on lights from my favorite chair. And the Tweeting Bird Feeder

project has opened my eyes to the uses of radio communications around the home

for things besides Wi-Fi, and it will help in my work to contribute to the preserva-

tion of bird species that are struggling for food and habitat.

➤ Bob Cochran, Information Technology Specialist

With this book, Mike Riley celebrates the Arduino microcontroller in a way that

both beginning and advanced home automation hobbyists will enjoy.

➤ Sven Davies, Vice President of Applications

This is an outstanding reference that should be on the desk of every DIYer. In

much the same way that software engineers mention “The Gang of Four Patterns

Book,” I predict this text will eventually be referred to as “The Riley Book of Home

Automation.”

➤ Jon Kurz, President, Dycet, LLC

Every technology is only as exciting as the things you do with it. Mike takes a few

cheap electronics parts, an Arduino, and a bit of code and turns your home into

a much more exciting and enjoyable place. His easy-to-follow instructions make

every single one of these projects both fun and useful.

➤ Maik Schmidt, Software Developer, Author of Arduino: A Quick-Start Guide

I’ve had more fun learning new languages, systems, and gadgets with this book

than any other book I’ve read!

➤ James Schultz, Software Developer

Home automation is great fun, and Programming Your Home by Mike Riley will

get you started right away. By leveraging this book and the easily available

free/inexpensive hardware and software, anyone can tackle some great projects.

➤ Tony Williamitis, Senior Embedded Systems Engineer

This is a fun and enthusiastic survey of electronic devices that can interact with

the real world and that starts in your own home!

➤ John Winans, Chief Software Architect

Programming Your Home
Automate with Arduino, Android, and Your Computer

Mike Riley

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create

better software and have more fun. For more information, as well as the latest Pragmatic

titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)

Potomac Indexing, LLC (indexer)

Molly McBeath (copyeditor)

David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-690-6

Printed on acid-free paper.

Book version: P1.0—February 2012

http://pragprog.com

This book is dedicated to Bill, Eileen, and

Josie.

Contents

Acknowledgments xi

Preface xiii

Part I — Preparations

1. Getting Started 3

What Is Home Automation? 31.1

1.2 Commercial Solutions 4

1.3 DIY Solutions 5

1.4 Justifying the Investment 5

1.5 Setting Up Your Workbench 6

1.6 Sketching Out Your Ideas 7

1.7 Writing, Wiring, and Testing 8

1.8 Documenting Your Work 9

2. Requirements 11

2.1 Knowing the Hardware 12

2.2 Knowing the Software 17

2.3 Be Safe, Have Fun! 18

Part II — Projects

3. Water Level Notifier 23

What You Need 233.1

3.2 Building the Solution 26

3.3 Hooking It Up 26

3.4 Sketching Things Out 27

3.5 Writing the Web Mailer 34

3.6 Adding an Ethernet Shield 36

3.7 All Together Now 40

3.8 Next Steps 41

4. Electric Guard Dog 45

What You Need 464.1

4.2 Building the Solution 47

4.3 Dog Assembly 48

4.4 Dog Training 52

4.5 Testing It Out 55

4.6 Unleashing the Dog 56

4.7 Next Steps 57

5. Tweeting Bird Feeder 59

What You Need 595.1

5.2 Building the Solution 62

5.3 The Perch Sensor 63

5.4 The Seed Sensor 67

5.5 Going Wireless 70

5.6 Tweeting with Python 75

5.7 Putting It All Together 83

5.8 Next Steps 84

6. Package Delivery Detector 87

What You Need 886.1

6.2 Building the Solution 90

6.3 Hardware Assembly 91

6.4 Writing the Code 92

6.5 The Package Delivery Sketch 92

6.6 Testing the Delivery Sketch 94

6.7 The Delivery Processor 95

6.8 Creating the Delivery Database 95

6.9 Installing the Package Dependencies 97

6.10 Writing the Script 98

6.11 Testing the Delivery Processor 102

6.12 Setting It Up 104

6.13 Next Steps 105

7. Web-Enabled Light Switch 107

What You Need 1077.1

7.2 Building the Solution 110

7.3 Hooking It Up 111

Contents • viii

7.4 Writing the Code for the Web Client 114

7.5 Testing Out the Web Client 116

7.6 Writing the Code for the Android Client 117

7.7 Testing Out the Android Client 121

7.8 Next Steps 124

8. Curtain Automation 127

What You Need 1278.1

8.2 Building the Solution 130

8.3 Using the Stepper Motor 131

8.4 Programming the Stepper Motor 132

8.5 Adding the Sensors 133

8.6 Writing the Sketch 134

8.7 Installing the Hardware 139

8.8 Next Steps 142

9. Android Door Lock 143

What You Need 1439.1

9.2 Building the Solution 146

9.3 Controlling the Android Door Lock 150

9.4 Writing the Android Server 154

9.5 Writing the Android Client 166

9.6 Test and Install 170

9.7 Next Steps 171

10. Giving Your Home a Voice 173

What You Need 17310.1

10.2 Speaker Setup 175

10.3 Giving Lion a Voice 177

10.4 Wireless Mic Calibration 179

10.5 Programming a Talking Lion 181

10.6 Conversing with Your Home 190

10.7 Next Steps 191

Part III — Predictions

11. Future Designs 195

11.1 Living in the Near 195

11.2 The Long View 198

11.3 The Home of the Future 200

Contents • ix

12. More Project Ideas 203

Clutter Detector 20312.1

12.2 Electricity Usage Monitor 204

12.3 Electric Scarecrow 204

12.4 Entertainment System Remote 204

12.5 Home Sleep Timer 205

12.6 Humidity Sensor-Driven Sprinkler System 205

12.7 Networked Smoke Detectors 205

12.8 Proximity Garage Door Opener 206

12.9 Smart HVAC Controller 207

12.10 Smart Mailbox 207

12.11 Smart Lighting 207

12.12 Solar and Wind Power Monitors 207

Part IV — Appendices

A1. Installing Arduino Libraries 211

A1.1 Apple OSX 211

A1.2 Linux 212

A1.3 Windows 212

A2. Bibliography 213

Index 215

x • Contents

Acknowledgments

I have been a lifelong tinkerer. My earliest recollection of dissecting my father’s

broken tape recorder instilled an appreciation for the technology that drove

it. From there, erector sets, model railroads, and programmable calculators

led to personal computers, mobile devices, and microcontrollers. Over the

years, this passion for learning not only how stuff works but also how technical

concepts can be remixed with surprising, often highly satisfying results has

been liberating. That’s why this book was such a joy for me to write.

Helping others to see what’s possible by observing their surroundings and

having the desire to take an active role in making their lives easier with

technology while having fun is this book’s primary goal. Yet without others

helping me distill my ideas into what you are reading now, this book would

not have been possible. It is to them that I wish to express my deepest grati-

tude for their support.

A boatload of thanks goes to the book’s editor, Jackie Carter, who spent

countless hours ensuring that my words were constructed with clarity and

precision. Copy editor Molly McBeath did a fantastic job catching hidden

(from my view anyway) typos and grammatical misconstructions. Big thanks

to Susannah Pfalzer for her infectious enthusiasm and boundless boosts of

encouragement and to Arduino expert and fellow Pragmatic author Maik

Schmidt, whose own success helped pave the way for a book like this.

Many thanks also go to John Winans, tech wiz extraordinaire, who refactored

the state machine code used in several of the projects, as well as to Sven

Davies, Mike Bengtson, Jon Bearscove, Kevin Gisi, Michael Hunter, Jerry

Kuch, Preston Patton, and Tony Williamitis for helping to make this book as

technically accurate and complete as it is. Shout-outs also go to Jon Erikson

and Jon Kurz for their enthusiastic encouragement. I also want to thank Bob

Cochran and Jim Schultz for providing wonderfully helpful feedback during

the book’s beta period. Thanks also go to Philip Aaberg for filling my ears with

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

music to code by. And to the makers of and contributors to the Arduino and

Fritzing projects, you people have changed the world for the better.

I am most grateful to my wife, Marinette, and my family for allowing me to

tunnel away for months in my mythical man cave to complete this book. And

I can’t gush enough over the wonderful pencil illustrations that my daughter

drew for the book. I am so proud of you, Marielle!

Finally, I am sincerely thankful to Dave Thomas and Andy Hunt for their

passion and vision. You’re the best.

Mike Riley

mailto:mike@mikeriley.com

Naperville, IL, December 2011

xii • Acknowledgments

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Preface

Welcome to the exciting, empowering world of home automation! If you have

ever wanted your home to do more than just protect you against the outside

elements and want to interface it to the digital domain, this book will show

you how. By demonstrating several easy-to-build projects, you will be able to

take the skills you learned from this book and expand upon and apply them

toward custom home automation projects of your own design.

The book’s primary objective is to get you excited about the broader possibil-

ities for home automation and instill the confidence you need to ultimately

build upon these and your own ideas. The projects also make great parent-

child learning activities, as the finished products instill a great sense of

accomplishment. And who knows? Your nifty home automation creations

may even change the world and become a huge new business opportunity for

other homeowners actively seeking an automation solution that saves them

time and money.

Who Should Read This Book

Programming Your Home is best suited to DIYers, programmers, and tinkerers

who enjoy spending their leisure time building high-tech solutions to further

automate their lives and impress their friends and family with their creations.

Essentially, it is for those who generally enjoy creating custom technology

and electronics solutions for their own personal living space.

A basic understanding of Arduino and programming languages like Ruby and

Python are recommended but not required. You will learn how to combine

these technologies in unique configurations to resolve homemaker annoyances

and improve home management efficiencies.

In addition to the inclusion of Python scripts and Ruby on Rails-based web

services, several of the projects call upon Google’s Android platform to help

enhance the data event collection, visualization, and instantiation of activities.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

A basic familiarity with the Android SDK will be beneficial so that the projects

that make use of the Android OS can offer a more mobile reach.

If you’re the type of person who prefers to build versus buy your home acces-

sories, this book will further motivate you to use what you learned in the

book as a starting point to expand upon and optimize them in various ways

for their environment. Even though some of the topics deal with multiple

software- and hardware-based solutions, they are easy to follow and inexpen-

sive to build. Most of all, they show how a few simple ideas can transform a

static analog environment into a smart digital one while having fun.

What’s in This Book

After a basic introduction to home automation and the tools of the trade, this

book will teach you how to construct and program eight unique projects that

improve home utility and leisure-time efficiencies. Each project incorporates

a variety of inexpensive sensors, actuators, and microcontrollers that have

their own unique functions. You will assemble the hardware and codify the

software that will perform a number of functions, such as turning on and off

power switches from your phone, detecting package deliveries and transmitting

emails announcing their arrival, posting tweets on Twitter when your bird

feeder needs to be refilled, and opening and closing curtains depending on

light and temperature, and more.

Because the recommended skill set for building these solutions includes some

familiarity with programming, this book builds upon several previously pub-

lished Pragmatic Bookshelf titles. If you would like to learn more about

programming Arduinos or writing Ruby or Python scripts, I strongly recom-

mend checking out the books listed in Appendix 2, Bibliography, on page 213.

Each project begins with a general introduction and is followed by a What

You Need section that lists the hardware parts used. This is followed by a

section called Building the Solution that provides step-by-step instructions

on assembling the hardware. Programming Your Home will call upon the

Arduino extensively for most (but not all) of the projects. Once the hardware

is constructed, it can be programmed to perform the automation task we built

it to do. Programs can range from code for Arduino microcontrollers to scripts

that execute on a computer designed to control, capture, and process the

data from the assembled hardware elements.

The book concludes with a chapter on future projections in home automation

and a chapter filled with idea starters that reuse the hardware and software

approaches demonstrated in the eight projects.

xiv • Preface

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Arduinos, Androids, and iPhones, Oh My!

With the meteoric rise of mobile device proliferation, the post-PC moniker has

made its way into the tech world’s vocabulary. I am a big proponent of tech-

nology shifts, but I am also old enough to have lived through three major

computing revolutions (the shift from mainframes to PCs, the rise of the

Internet, and the shift from PCs to mobile devices) and know that change

isn’t as fast as people say it is. Until mobile applications can be developed on

mobile devices the way PC applications can be developed on PCs, a Linux,

Windows, or Mac computer will be a central requirement for developing mobile

apps. The same holds true for Arduino programming.

That said, the times are indeed a-changing. Microsoft Research was one of

the first major phone OS providers to attempt to create native mobile applica-

tions directly on the mobile device with their release of TouchStudio. Google

engineer Damon Kohler created the Scripting Layer for Android (SL4A) that

gives Android users the ability to write fairly sophisticated programs using a

text editor on their phone. Coupled with Sparkfun’s IOIO (“yo-yo”) board,

we’re already seeing early glimpses of what could replace the PC for some of

the scripts created for this book.

Since you will need a Mac, Linux, or Windows computer to program the

Arduinos and mobile apps in this book, this computer will also be the machine

that runs the server-side programs that interpret and extend information out

to your mobile devices. Of course, if you only have one computer and it’s a

laptop that travels with you, consider purchasing a cheap Linux or Mac to

run as your home server. Not only will you benefit from having a dedicated

system to run the monitoring apps 24/7/365, but it can also serve as your

home Network Attached Storage (NAS) server as well.

I am a believer in open source hardware and software. As such, the projects

in the book depend upon these. I am also technology-agnostic and rarely have

any overriding devotion to one hardware supplier or programming language.

Code for this book could have been presented just as easily in Mono-based

C# and Perl, but I opted for Ruby and Python because of their portability and

multiparty open source support. I could have used a Windows or Linux

machine as the server and development system but chose Mac for the book

because Ruby and Python are preinstalled with the OS, thereby eliminating

the time and space required to install, configure, and troubleshoot the oper-

ating environment.

In accordance with this open source philosophy, I also opted to demonstrate

the mobile application examples exclusively for the Android OS. While I

report erratum • discuss

Arduinos, Androids, and iPhones, Oh My! • xv

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

personally prefer iOS devices as the platform of choice for my mobile lifestyle,

the overhead associated with writing applications for iOS is a hassle. In addi-

tion to learning Objective-C and the various frameworks as well as dealing

with the burden of memory management, deploying iOS apps requires either

a jailbroken device or the legitimate purchase of an annual membership to

Apple’s iPhone developer network. Conversely, Android’s SDK and application

deployment is free and open. Android programs can also multitask better

than iOS programs. Of course, these two advantages also bring on greater

security and resource utilization risks. That said, I encourage readers who

prefer the mobile demos to run on non-Android devices to port the simple

client programs presented in this book to their favorite mobile OS and share

these conversions with the Programming Your Home community.

Another term that is gaining a foothold in the tech press is the “Internet of

Things.” This phrase refers to the idea that with the proliferation of network-

connected microcontrollers, Internet-based communication between such

small devices will eventually outnumber people surfing the Web. While that

may be the case for submitting data upstream, reaching such a device from

the Internet is still a hassle. Besides the technical knowledge required to set

up a dynamic DNS and securely configure port forwarding to easily reach the

device, ISPs may block outbound ports to prevent end consumers from setting

up dedicated servers on popular network ports like FTP, HTTP/S, and SMTP.

The projects in this book should work perfectly fine in a home local area

network. However, obtaining sensor data outside of this local network is a

challenge. How do you check on the status of something like a real-time

temperature reading without going through the hassles of opening and for-

warding ports on your router (not to mention the potential security risks that

entails)?

Fortunately, several companies have begun to aggressively offer platforms

accessible via simple web service APIs to help overcome these hassles. Three

of these gaining momentum are Pachube, Exosite, and Yaler.1 Configuring

and consuming their services is a fairly straightforward process. I encourage

you to visit these sites to learn more about how to incorporate their messaging

capabilities into your own projects.

1. http://www.pachube.com, http://www.exosite.com, and http://www.yaler.org, respec-

tively.

xvi • Preface

report erratum • discuss

http://www.pachube.com
http://www.exosite.com
http://www.yaler.org
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Code Examples and Conventions

The code in this book consists of C/C++ for Arduino, Java for Android, Ruby

for web middleware, and Python for desktop scripts. Most of the code examples

are listed in full, except when burdened by external library overhead (such

as in the case of Android and Ruby on Rails program listings). Syntax for

each of these languages is highlighted appropriately, and much of the code

is commented inline along with bullet markings to help bring attention to the

big ideas in the listings.

Highlights and sidebars are used sparingly in the book in an effort to keep

information moving at a quick yet manageable clip.

Online Resources

Visit the book’s website at http://pragprog.com/titles/mrhome, where you

can download the code for all the projects, participate in the book’s discussion

forum, ask questions, and post your own home automation ideas. Bugs, typos,

omissions, and other errors in the book can be found on the book’s errata

web page.

Other popular website resources include the popular DIY websites Makezine,

and Instructables,2 where participants share a wide variety of home-brewed

creations with their peers.

There are also several IRC channels on freenode.net and SIG forums on Google

Groups dedicated to the subject, with many focused on singular aspects of

DIY gadget design, home automation, and hardware hacking.3

OK, enough with the preamble. Let’s get ready to build something!

2. http://www.makezine.com and http://www.instructables.com, respectively.

3. http://groups.google.com/group/comp.home.automation/topics

report erratum • discuss

Code Examples and Conventions • xvii

http://pragprog.com/titles/mrhome
http://www.makezine.com
http://www.instructables.com
http://groups.google.com/group/comp.home.automation/topics
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Part I

Preparations

CHAPTER 1

Getting Started

Before we start wiring up hardware and tapping out code, let’s lay down the

foundation, starting with what exactly we mean by home automation, what’s

been available in the consumer space in the past, and why building our own

solutions makes sense today and in the future.

We will also review a couple of design and construction best practices that

will be put to good use when assembling the projects in this book.

We’ll start by defining what we mean by home automation. Next we’ll consider

some of the prepackaged commercial solutions on the market, and then we’ll

take a quick snapshot of some of the more popular custom automation

hardware and software projects. The chapter will conclude with some of the

tools and practices that have helped me quite a bit when building the projects

in this book as well as with other projects beyond the home automation

category.

1.1 What Is Home Automation?

So what exactly does the term home automation mean? At its most basic

level, it’s a product or service that brings some level of action or message to

the home environment, an event that was generated without the homeowner’s

direct intervention. An alarm clock is a home automation device. So is a smoke

alarm. The problem is, these stand-alone devices don’t use a standard network

communication protocol, so they can’t talk to one another the way that net-

worked computers can.

One of my earliest memories of home automation was when the Mr. Coffee

automatic drip coffee machine came out in the early 1970s. The joy this

simple kitchen appliance brought my coffee-drinking parents was genuine.

They were so pleased to know that when they woke up in the morning a

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

freshly brewed pot of coffee would be waiting for them. Who would have

thought that such a simple concept as a coffee maker combined with an alarm

clock would change their world?

Now that we’re in the twenty-first century, rudimentary coffee makers are

getting a makeover by tinkerers bolting network adapters, temperature sen-

sors, and microcontrollers to make the brew at the right time and temperature

and to send a text message alert that the beverage is ready for consumption.

It’s only a matter of time before manufacturers incorporate inexpensive elec-

tronics into their appliances that do what tinkerers have been doing with

their home electronics for years. But a standard communication protocol

among such devices remains elusive. Nevertheless, efforts are afoot by a

number of home automation vendors to address that problem.

1.2 Commercial Solutions

The number of attempts to standardize home automation communication

protocols has been ongoing nearly as long as Mr. Coffee has been in existence.

One of the earliest major players was X10, a company that still offers basic

and relatively inexpensive home automation solutions today. X10 takes

advantage of existing electrical wiring in the home. It uses a simple pulse

code protocol to transmit messages from the X10 base station or from a

computer connected to an X10 communication interface. But problems with

signal degradation, checksums, and return acknowledgments of messages,

as well as X10’s bulky hardware and its focus on controlling electrical current

via on/off relay switches, have constrained X10’s broader appeal.

Other residentially oriented attempts at standards, such as CEBus and

Insteon, have been made, but none have attained broad adoption in the home.

This is partly due to the chicken-and-egg problem of having appliance and

home electronics manufacturers create devices with these interfaces and

protocols designed into their products.

Most recently, Google has placed its bet on the Android operating system

being embedded into smart devices throughout the home. Time will tell if

Google will succeed where others have failed, but history is betting against

it.

Rather than wait another twenty years for a winning standard to emerge,

embedded computing devices exist today that employ standard TCP/IP to

communicate with other computers. This hardware continues to drop to

fractions of the prices they cost only a few years ago. So while the market

continues to further commoditize these components, the time is now for

4 • Chapter 1. Getting Started

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

software developers, home automation enthusiasts, and tinkerers to design

and implement their own solutions. The lucky few will uncover and market

a cost-effective, compelling solution that will one day catch on like wildfire

and finally provide the impetus to forever change our domestic lives.

1.3 DIY Solutions

The Do-It-Yourself category in home automation is more active today than

ever before. The combination of inexpensive electronics with low-cost net-

worked computers make this option extremely attractive. There’s other reasons

that make DIY an ideal pursuit. Unlike proprietary commercial offerings, the

projects you build are not mysterious black boxes. You have the source code.

You have the knowledge. You have the measurements, the metrics, and the

methods.

Not only will you know how to build it, you will know how to troubleshoot,

repair, and enhance. None of the commercial solutions can match exactly

what you may need. Home automation vendors have to generalize their

products to make them appeal to a large consumer base. By doing so, they

don’t have the luxury of creating one-off solutions that exactly match one

customer’s specific needs. But with some rudimentary knowledge and project

construction experience, you’ll gain the confidence to create whatever design

matches your situation.

For example, the first project in this book builds a sump pit notifier that

emails you when water levels exceed a certain threshold. While commercial

systems have audible alarms, none that I have found at the local hardware

store have the means to contact you via such messaging. And should you

need to modify the design (add a bright flashing LED to visually broadcast

the alert, for example), you don’t need to purchase a whole new commercial

product that includes this feature.

Walk around your house. Look for inefficiencies and repetitive tasks that

drive you crazy the way George Bailey was with pulling off the loose finial on

his staircase’s newel post. Take note of what can be improved with a little

ingenuity and automation. You may be surprised at just how many ideas you

can quickly come up with.

1.4 Justifying the Investment

Let’s be honest. Spending more money on parts that may or may not work

well together versus buying a cheaper purpose-built device that meets or

report erratum • discuss

DIY Solutions • 5

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

exceeds the functionality of a homegrown solution is simply not a good invest-

ment. Sure, there may be some value derived from the knowledge gained from

the design experience, the pleasure of building the solution, and the satisfac-

tion of seeing your creation come to life. But justifying such an investment

to a budget-conscious spouse, for example, may deflate whatever gains you

have made in the satisfaction department.

When considering any new design approach, strive for a scenario where you

will maximize your time, equipment investment, and learning potential. You

may have to try several experiments and iterations before the hardware and

software come together and work the way you envisioned. But if you keep at

it, you will be well rewarded for your persistence. Not only will you achieve

high points for devising a low-cost solution, but such constraints will help

drive creativity to even higher levels. That’s why I have tried my best to keep

all the projects in this book within a reasonable budget, and I encourage

reuse of old electronic parts and materials as much as possible.

Do your homework. Research online to see who may have attempted to build

what you have in mind. Did they succeed? Was it worth the money and time

they invested? Is there a commercially viable alternative?

If you determine that your idea is unique, put together an estimate of the

expenses in terms of your time and of the materials you need to purchase.

Remember to also include the cost of any tools you need to buy to construct

and test the project’s final assembly. This added expense is not negligible,

especially if you’re just starting down the DIY road. As you get more involved

with hardware projects, you will quickly find that your needs will expand from

an inexpensive soldering iron and strands of wire to a good quality multimeter

and perhaps even an oscilloscope. But the nice thing about building your

own solutions is that you can build them at your own pace. You will also find

that as your network of DIYers grows, your opportunities for group discussion,

equipment loans, insightful recommendations, and encouragement will grow

exponentially.

1.5 Setting Up Your Workbench

Good assembly follows good design. Building these projects in a frustration-

free environment will help keep your procedures and your sanity in check.

Work in a well-lit, well-ventilated area. This is especially important when

soldering. Open a window and use a small fan to push the fumes outside.

Use a soldering exhaust fan if an open window isn’t an option.

6 • Chapter 1. Getting Started

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

If your work space can afford it, have a large table to spread out your electronic

parts. Keep it close to power outlets and have a power strip on the table for

easy access.

Organize your components with small craft containers, baby food jars, pill

boxes, Altoids tins—anything that helps keep the variety of capacitors, resis-

tors, LEDs, wires, shields, motors, and sensors sorted will make it much

easier to keep track of your parts inventory.

Have your computer stationed near or on the work space. This is a no-

brainer if it’s a laptop. If it’s a desktop, minimize its table footprint by only

placing a monitor, mouse, and keyboard (both preferably wireless) on the table

to leave as much unobstructed working space as possible.

Keep clutter away from underneath and around the table. Not only does this

aid fire prevention, but doing so will also make it far easier to find that elusive

component when it rolls off the table and bounces toward the unknown.

Lastly, keep the work space dedicated to project work. Some projects can be

like building a jigsaw puzzle. You need a place for the half-assembled pieces

to sit while life goes on. Being able to sit down and start working, rather than

start unboxing and repackaging a fur ball of wires and parts, makes building

projects a joy instead of a chore.

1.6 Sketching Out Your Ideas

When inspiration strikes, nothing beats old-fashioned pencil and paper to

quickly draw out your ideas. For those who prefer to brainstorm their designs

on a computer, several free, open source, cross-platform tools have helped

me assemble my ideas and document my work:

• Freemind is great for organizing thoughts, objectives, and dependencies.1

This mature mind-mapping application helps you make sense of a brain

dump of ideas and see the links between them. This will save you time

and money because you will be able to spot key ideas, eliminate redun-

dancies, and prioritize what you want to accomplish.

• Fritzing is a diagraming application specifically designed for documenting

Arduino-centric wiring.2 Unfortunately, it’s still a work in progress and

is rough around the edges. It also doesn’t have a number of the popular

sensors iconically represented yet, but the object library is growing as

1. http://freemind.sourceforge.net

2. http://fritzing.org/

report erratum • discuss

Sketching Out Your Ideas • 7

http://freemind.sourceforge.net
http://fritzing.org/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

more people contribute to the project. I use this application exclusively

for documenting my Arduino-based projects, which is why the wiring

diagrams in this book were generated by Fritzing.

• Inkscape is an easy-to-use vector-based drawing program that helps

sketch out ideas beyond the Arduino-centricity of Fritzing.3 While Inkscape

is mainly intended for graphic artists, it has accurate measurement tools

that are great for scoping out bracket and enclosure ideas for your projects.

Going beyond the desktop, tablets are rapidly taking over the role that were

once the domain of traditional paper uses. In fact, it wouldn’t surprise me if

you’re reading this book on an iPad or a Kindle right now. Beyond just refer-

ence lookups, tablets are excellent for brainstorming ideas and creating initial

sketches of preliminary project designs. An iPad (or Android tablet, for that

matter) combined with a sturdy stand also makes for a handy electronic ref-

erence. Load up your sketches, track your progress, reorder priorities, and

make notes along the way.

My current favorite iPad apps for my projects include the following:

• Elektor Electronic Toolbox is an electronic parts reference with a variety

of helpful calculators and conversion tools.4

• iCircuit is a electronic circuit simulator that makes building and under-

standing circuits far easier than static diagrams on a printed page.5

• iThoughts HD is a mind-mapping application compatible with importing

and exporting Freemind files.6

• miniDraw is a vector-based drawing program that can export to SVG

format, perfect for importing your sketches into Inkscape.7

In addition to designing and documenting your projects, well-executed projects

also rely on taking accurate measurements and running tests to validate your

work.

1.7 Writing, Wiring, and Testing

Unfortunately, no good software emulator exists yet for the Arduino; fortu-

nately, programs for this platform are usually small and specific enough such

3. http://inkscape.org

4. http://www.creating-your-app.de/electronic_toolbox_features.html?&L=1

5. http://icircuitapp.com/

6. http://ithoughts.co.uk

7. http://minidraw.net/

8 • Chapter 1. Getting Started

report erratum • discuss

http://inkscape.org
http://www.creating-your-app.de/electronic_toolbox_features.html?&L=1
http://icircuitapp.com/
http://ithoughts.co.uk
http://minidraw.net/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

that the compile-run-debug cycles are tolerable. Good coding and testing

techniques go a long way toward ensuring a high-quality outcome. The same

goes for constructing and wiring up the physical electrical connections.

While nearly all of the projects in this book can be constructed without solder,

permanent installations require good soldering techniques to ensure a con-

ductive pathway. It’s best to verify (usually with the help of a breadboard)

that the connections work as expected before making them permanent with

solder.

Use good code-testing techniques. Whether for microcontroller code for the

Arduino or server-side code for your Ruby or Python scripts, Test-Driven

Development (TDD) is a good practice to adopt. There are a number of good

testing frameworks and books available on the subject. Read Ian Dees’s article,

“Testing Arduino Code,” in the April 2011 edition of PragPub magazine,8 as

well as Continuous Testing: with Ruby, Rails, and JavaScript [RC11].

Run unit tests like py.test when writing Python-powered scripts. When coding

in Ruby and creating Rails-based web front ends, consider using Rspec (for

more details on using Rspec, read The RSpec Book [CADH09]). Use the Android

testing framework for your Android applications.9 Even when working on

small applications, using proven testing methodologies will help keep you

sane while further elevating the quality in your code.

Know how to use a multimeter. Like a software debugger, a multimeter can

come in quite handy when trying to figure out what’s happening inside your

project—for example, where a short might be stepping on your project. Besides

detecting problems, a multimeter is also useful for measuring electrical output.

For example, you can also use it to determine if a solar battery pack can

deliver enough uninterrupted energy to power a microcontroller-operated

servo.

If you’re not familiar with how a multimeter operates, just type “voltmeter

tutorial video” in your favorite search engine. There are plenty online to choose

from.

1.8 Documenting Your Work

Hand-drawn scribbles offer nice starting points, but often projects take twists

and turns along the way that have to account for limited resources or hardware

8. http://www.pragprog.com/magazines/2011-04/testing-arduino-code

9. http://developer.android.com/guide/topics/testing/testing_android.html

report erratum • discuss

Documenting Your Work • 9

http://www.pragprog.com/magazines/2011-04/testing-arduino-code
http://developer.android.com/guide/topics/testing/testing_android.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

that just doesn’t work as planned. The final product may be vastly different

from the original design. That’s why it’s so important to finish a project with

accurate, clean, and concise documentation, especially if you plan to share

your design with others.

Using applications like Fritzing can aid with the generation of clean, full-color

wiring diagrams. Doing so will go a long way toward showing exactly how to

wire up a project. Nothing is worse than seeing blurry, angled Flickr photos

or YouTube videos of wires plugging into hard-to-see shield or breadboard

pinholes as the primary means of documentation. Having those are nice

supplementals, but any well-designed project should be accompanied by clear

and easy-to-follow wiring illustrations.

Leave verbose comments in your code, even for the simple scripts and

sketches. Not only will it help you and those you share the code with under-

stand what various routines are doing, good comments will also put you back

in the frame of mind you were in when writing the code in the first place. And

if you share your code on various repository sites like Github and Sourceforge,

well-commented code shows a greater level of professional polish that will

gain you more respect among your peers.

With all these recommendations, keep in mind that the most important

takeaway from the book’s projects is to have fun doing them. These rewarding

experiences will encourage you to use these projects as starting points and

infuse your own unique needs and design goals into them.

In the next chapter, we will review the hardware and software we will use and

take into account the optimal configurations of each.

10 • Chapter 1. Getting Started

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 2

Requirements

Before diving into the book’s projects, we need to consider the materials and

best practice methodologies we will employ when building the solutions.

A key tenet I practice in this book is for the various projects to be as easy and

inexpensive to build as possible. While it may be fun to construct an elaborate

Rube Goldberg contraption that costs hundreds of dollars to open a can of

soup, it’s far more practical to spend a dollar on a can opener that you can

buy from the store. I have tried my best to maximize the value of money and

time with each project. As such, few of them should cost more than sixty

dollars in parts or take more than an hour to construct.

It’s also good to practice reuse whenever possible. This is far easier for software

than for hardware, but it can be done. That is why an inexpensive microcon-

troller board like the Arduino is at the center of several of these projects.1 In

an effort to save money on the hardware investment, it may be worthwhile to

try out one or two projects concurrently and decide which ones make the

most positive impact before buying a half dozen Arduino boards. After you

have built the projects that you’re most interested in, then build upon them,

improve them, and remix them. When you have an especially cool creation,

contribute your discoveries to the Programming Your Home book forum.

Most software development projects typically do not require much more than

a computer and the choice of language and frameworks the programming

logic executes within. But with the addition of hardware sensors, motors, and

purpose-built radios and controllers, the design and construction workflow

is a little more complex. Essentially, you are building two major components

with each project: the physical collection of hardware and the software that

1. http://arduino.cc/

report erratum • discuss

http://arduino.cc/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

will measure, interpret, and act on the data that the hardware collects. Let’s

take a look at what comprises these two key development aspects.

2.1 Knowing the Hardware

The Arduinos, sensors, and motors (technically referred to as actuators) used

in the projects can be purchased from a number of online retailers, with my

current two favorites being Adafruit Industries and Sparkfun.2 For the budget-

conscious builder, Craigslist and eBay offer money-saving deals. Purchasing

used parts from these online classified listing services may come in especially

handy when searching for old Android handsets and X10 controls. But buyer

beware: there is often little recourse you can take should a used part stop

working a few days after you have received it. Companies like Adafruit and

Sparkfun stake their reputations on their over-the-top customer support and

will usually accommodate any reasonable replacement request.

Each project in the book contains a What You Need section that lists the

hardware and software components required to build the solution. The

hardware used is nothing exotic or difficult to find and purchase online, and

some projects even incorporate common household items like dry cleaning

clothes hangers and cloth scraps in their parts list. Here is a complete inven-

tory of electronic components required to build the projects in this book and

their estimated per item costs:

• Arduino Uno, Duemilanove, or Diecimila - $30

• Ethernet shield - $45

• Wave shield with speaker, wire, and SD card - $35

• Passive infrared (PIR) motion sensor - $10

• Flex sensor - $12

• Force sensitive resistor - $7

• TMP36 analog temperature sensor - $2

• CdS photoresistor (commonly referred to as a photocell) - $1

• Standard servo motor - $15

• Smarthome electric 12VDC door strike - $35

• Two XBee modules and adapter kits - $70

2. http://www.adafruit.com and http://www.sparkfun.com, respectively.

12 • Chapter 2. Requirements

report erratum • discuss

http://www.adafruit.com
http://www.sparkfun.com
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

• FTDI connector cable - $20

• Solar charger with built-in rechargeable battery - $30

• X10 CM11A ActiveHome serial computer interface - $50

• X10 PLW01 standard wall switch - $10

• Serial USB converter - $20

• Home computer (Linux or Mac preferred) - $200 to $2,000, depending on

model

• Wireless Bluetooth speaker - $120

• Android G1 phone - $80 to $150, depending on its used condition

• Android smartphone - $50 to $200, depending on features and carrier

contract

• Sparkfun IOIO board with JST connector, barrel jack to 2-pin JST con-

nector, and 5VDC power supply - $60

• Male USB to male mini-USB cable - $3

• 2.1 mm female barrel jack cable - $3

• Spool of wire (22 AWG should be adequate) - $3

• 10K ohm resistor - $0.10

• 10M ohm resistor - $0.10

• Small breadboard - $4

• Electrical tape or heat shrink tubing - $5

• 9-volt DC power supply - $7

• 12-volt 5A switching power supply - $25

• PowerSwitch Tail II with a 1K resistor and a 4222A NPN transistor - $20

• Stepper motor - $14

Each of these parts is reusable with the projects throughout the book. Natu-

rally, if a particular project is permanently installed in your home, you will

have to replenish the inventory to replace the parts used in that permanent

fixture. Do It Yourself (DIY) hardware project building, like writing code, is a

satisfyingly addictive experience. As your confidence grows, so too will your

expenditures on electrical components.

report erratum • discuss

Knowing the Hardware • 13

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Of all the parts used throughout the book, three items that are frequently

called upon are Android smartphones, Arduinos, and XBee radios. I will give

a brief overview of each in the next sections. If you intend to leverage these

useful electronics further, refer to the Android, Arduino, and XBee titles in

Appendix 2, Bibliography, on page 213, for more information on these remark-

able, transformative technologies.

Android Programming

The Android operating system is continuing its rapid expansion and domina-

tion in certain telecommunications and embedded systems markets. Google

announced its Android@Home initiative and is encouraging developers and

consumer electronics manufacturers to consider Android as a base technology

for smart home systems. Several electronics vendors have released hardware

that is compliant with the Android Open Accessory Development Kit (ADK)

and that takes advantage of the interfaces Google has designed.3

The ADK board I chose is Sparkfun’s IOIO board. ADK support for the IOIO

was still in beta at the time of this book’s publication, and loading the ADK-

enabled firmware on the board is not a trivial exercise. Chapter 9, Android

Door Lock, on page 143, instead discusses a project in this book using tradi-

tional Android SDK calls while incorporating the custom hardware library

that the IOIO board currently provides.

As the cost of ADK developer hardware drops, more economically viable options

will be available for developers and manufacturers alike. But for now, a used

first-generation Android phone coupled with an IOIO is still far more powerful

and much less expensive than a comparably spec’d ADK board with the same

features (camera, GPS, Bluetooth, Wi-Fi) as a smartphone. By the time ADK

devices become cheap and plentiful, you will be ahead of the game by having

working knowledge of the Android application development ecosystem.

Some Android-centric projects involve building both a native client and a

server application. While the client applications could have been written in

a device-agnostic web framework like jQuery Mobile,4 it’s useful to stress the

importance of native mobile app development. By having this native foundation

from the start, you will be able to more easily call upon advanced phone

functions that are inaccessible from a web-based interface. Native applications

also tend to load and respond faster than their browser-based counterparts.

3. http://developer.android.com/guide/topics/usb/adk.html

4. http://jquerymobile.com/

14 • Chapter 2. Requirements

report erratum • discuss

http://developer.android.com/guide/topics/usb/adk.html
http://jquerymobile.com/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

While it’s not necessary to have prior experience developing Android applica-

tions to build the Android programs in this book, it will certainly help to have

some familiarity with the Android SDK.5

Arduino Programming

If you have C or C++ coding experience, you will feel right at home with writing

code for the Arduino’s ATMega 168/328 microcontroller. Arduino programs,

known as sketches, are easy to write once you learn the basic structure of

an Arduino application.

Let’s take a quick look at the basic anatomy of an Arduino sketch. It begins

with #include statements at the head of the sketch import code libraries, just

as they are in C programs. This is followed by global variable and object ini-

tializations that are usually referenced in the sketch’s setup() routine. The setup()
function is typically used to reference physical wiring connection points,

known as “pins” on the Arduino board, along with the global variable assign-

ments made in the initialization section. An example of this assignment might

be something like int onboard_led = 13; before setup(). This code instructs the

Arduino to use pin 13 (the location of its onboard LED) to be accessible in

the sketch. We can then assign the pin for output with the line pinMode(on-
board_led, OUTPUT) within the setup() routine.

After the variable assignment and setup() program initializations are established,

sketches enter the main loop() routine that infinitely iterates over the instruc-

tions contained within it. It is here that the sketch waits for some event to

occur or repeats a defined action. We will revisit this structure and the process

of writing, compiling, and running Arduino programs again in our first project,

the Water Level Notifier.

Any text editing program can be used to write sketches, with the most popular

being the free Arduino Integrated Development Environment (IDE) available

for download from the Arduino website. This Java-based coding environment

incorporates everything you need to compile your sketches into machine-

friendly ATMega microcontroller instructions. It also comes bundled with

dozens of sample sketches to help you quickly learn the syntax and realize

the number of different sensors and motors that the Arduino can interact

with. And because it is based on Java, the Arduino IDE will run identically

on Windows, Mac, and Linux computers.

5. http://developer.android.com/sdk

report erratum • discuss

Knowing the Hardware • 15

http://developer.android.com/sdk
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Joe asks:

Does the Arduino IDE Have a Virtual Emulator?

Unlike most desktop and mobile application development, no official Arduino emulator

exists. It’s difficult to simulate all the different physical sensors and motors that the

Arduino can be connected to. Several third-party attempts have been made to create

such a tool, but they are either limited in the operating systems they support or focus

on the ATMega chip and not the full Arduino package. Two Windows-based emulators

are Virtual Breadboard and Emulare,a with Virtual Breadboard being the one I

recommend due to its virtual representation of Arduino hardware. Virtual Breadboard

also provides a limited set of emulated sensors and other devices that connect to the

onscreen Arduino.

Given the low cost of the Arduino itself, few find much use for an emulator other than

for unit testing and convenient, portable virtual hardware reasons. Spend the money

for an actual board rather than messing around with the emulators. Sketches are

short, and the serial window in the Arduino IDE is helpful enough to offer detail to

adequately debug and tweak real-live hardware.

a. http://www.virtualbreadboard.net and http://emulare.sourceforge.net/, respec-

tively.

XBee Programming

Another key technology we will be using in several of the projects is a radio

device based on the IEEE 802.15.4 wireless specification, commonly known

as XBee. XBee radios are ideal for Arduino-based wireless projects due to

their low-cost, low-power, and easy-to-use serial interface communication.

Low-powered XBees are used mainly for character-level bitstream communi-

cations. Broadcast distances between radios are roughly within a fifteen-meter

(50-foot) radius.

The projects in this book that incorporate XBee-to-XBee communications use

single characters or short strings to announce a state change as a result of

a sensor event. Such changes are then broadcast wirelessly to a paired XBee

modem that is usually attached to a computer or embedded system that

processes the received signal. I prefer to log this data before acting upon it

to store events and help with debugging. After logging the received data, the

computer may also further propagate the signal by translating it into a web

service-friendly payload, an email message, a servo motor movement, or any

other call to action.

The most time-consuming and challenging aspect of using XBees is correctly

assembling the hardware and pairing the radios. It is not a trivial procedure,

16 • Chapter 2. Requirements

report erratum • discuss

http://www.virtualbreadboard.net
http://emulare.sourceforge.net/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

but it is also not too difficult either. Fortunately, Limor “Ladyada” Fried,

founder of Adafruit Industries and open hardware electrical engineer extraor-

dinaire, has posted a terrifically helpful tutorial on her website that provides

detailed, step-by-step instructions on assembling XBee adapter kits sold along

with the XBee radio modules. We will explore this further when we use XBees

for the first time in the Tweeting Bird Feeder project.

Incidentally, Digi International, the company who manufacturers the XBee

hardware, recently announced a 802.11 b/g/n Wi-Fi–capable XBee that obvi-

ates the need for a second XBee connected via an FTDI cable for the receiving

PC. However, the cost for this convenience is considerably more than the

configuration I used in the book. If you’re interested in this more convenient

approach, check out the XBee Wi-Fi page on Digi’s website.7

A number of books (such as Building Wireless Sensor Networks [Fal10]) and

online resources go into greater detail on learning basic electronics, Arduino

programming, and wireless networking. This section simply provided an

overview of how to work with the specific hardware we will use in this book’s

projects. In the next section, we will take a quick survey of the software we

will use to bring the assembled hardware to life.

2.2 Knowing the Software

In addition to being familiar with the C/C++ syntax used for programming

Arduino sketches, you will be able to follow along easier if you are familiar

with the Java, Ruby, and Python languages. Ruby on Rails experience is also

a plus. If you are unfamiliar with these, review Appendix 2, Bibliography, on

page 213, for several titles that do a great job of teaching these languages and

frameworks.

Even if you don’t know much about these languages, you should be able to

build and execute the code for these projects with little or no modification on

a Linux or Macintosh computer. Windows users will need to install their

preferred Python and Ruby distributions as well as the Java runtime, and

some of the utilities used in this book that were written for Unix-based oper-

ating systems might not have a Windows version available. A PC can be

loaded with your preferred Linux distribution, and a Mac Mini will be more

than adequate for the OS X crowd. This home server should be a reasonably

inexpensive component in the Programming Your Home hardware collection.

7. http://www.digi.com/xbeewifi

report erratum • discuss

Knowing the Software • 17

http://www.digi.com/xbeewifi
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Java familiarity will come in handy when writing the Android client and

server applications later in the book. Experience with Python and Ruby is

also a plus. Python also comes preinstalled on Mac and on nearly all Linux

distributions. As such, a majority of server-side scripts in this book are

Python-based. Java, Perl, PHP, or Ruby developers intent on staying pure to

their favorite technology shouldn’t have too difficult a time porting the project’s

server-side applications to their language of choice. I encourage any readers

interested in porting the book’s code to a different language to share their

work with other readers via the book’s website.

2.3 Be Safe, Have Fun!

I deliberately designed the projects in this book to have little or no chance of

electrical shock or damage to persons or property should something unexpect-

ed occur. It should go without saying that you should always employ safe

practices when assembling any hardware project.

In addition to the book’s disclaimers that I as the author and The Pragmatic

Bookshelf as the publisher cannot be held liable for any damages of any kind

as a consequence of building and powering these projects (as well as be held

liable in any way for hardware you use or modify for these projects—for spe-

cific details, see Proceed at Your Own Risk. You Have Been Warned!, on page

19), I cannot stress this highly enough: unless you are a certified electrician,

plumber, or carpenter and know exactly what you’re doing at all times, don’t

start poking around and tampering with the basic infrastructures found in

the home. Call upon the experience of professional, certified electricians when

wiring for the home. Trust me. The up-front planning and outside expertise

will deter aggravation, save you money, and protect you from physical harm.

Leaving these foundational aspects to the professionals will leave you with

more time to implement and optimize your ultra-cool and envy-invoking smart

home creations.

OK, enough with the requirements and disclaimers. Let’s dive into the next

section, where we will finally get to assemble and code some really nifty and

unique home automation projects!

18 • Chapter 2. Requirements

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Proceed at Your Own Risk. You Have Been Warned!

Your safety is your own responsibility. Use of the instructions and suggestions in

this book is entirely at your own risk. The author and the Pragmatic Programmers,

LLC, disclaim all responsibility and liability for any resulting damage, injury, or

expense as a result of your use or misuse of this information.

It is your responsibility to make sure that your activities comply with all applicable

laws, regulations, and licenses. The laws and limitations imposed by manufacturers

and content owners are constantly changing, as are products and technology. As a

result, some of the projects detailed here may not work as described or may be incon-

sistent with current laws, regulations, licenses, or user agreements, and they may

even damage or adversely affect equipment or other property.

Power tools, electricity, and other resources used for these projects are dangerous

unless used properly and with adequate precautions, including proper safety gear

(note that not all photos or descriptions depict proper safety precautions, equipment,

or methods of use.) You need to know how to use such tools correctly and safely. It

is your responsibility to determine whether you have adequate skill and experience

to attempt any of the projects described or suggested here. These projects are not

intended for use by children.

Make sure you are comfortable with any risks associated with a project before starting

that project. For example, if the idea of dealing with 110V power worries you, then

don’t do the projects that use it, and so on. We also don’t know about any local ordi-

nances that might apply to you, so before you go wiring stuff in, you should check

your building codes. If in doubt, have a chat with a local professional.

Only build these projects if you agree that you do so at your own risk.

Good luck, and have fun!

report erratum • discuss

Be Safe, Have Fun! • 19

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Part II

Projects

CHAPTER 3

Water Level Notifier

If you live in the midwestern part of the United States like I do, you know all

about heavy rains and the effects they can have on a basement. Stories of

sump pumps failing during torrential downpours are often punctuated with

“Had I only known how quickly the water level in my sump pit was rising, I

would have had more time to move my stored items out of the way.”

Imagine another scenario, where someone needs to use a dehumidifier to

remove dampness in a cellar. Inexpensive dehumidifiers often stop working

when water reaches a certain height in the condensation bucket. Some

models may include an audible alarm or flashing light when this shutdown

occurs, but such alerts are ineffective because the dehumidifier is typically

installed in an infrequently visited area.

Wouldn’t it be more convenient to receive an email from your house when the

water levels in these containment areas exceed a certain threshold, alerting

you to take action? (See Figure 1, Have your house email you, on page 24.)

Let’s get our feet wet, so to speak, and build a system that will provide this

helpful notification service.

3.1 What You Need

The main component required to make this project work is something called

a flex sensor. The buoyancy of rising water levels will bend the sensor. As the

sensor bends one way or the other, current values will increase or decrease

accordingly. The sensor’s position can be read with a simple Arduino program

and can be powered via either the Arduino’s 3.3 or 5.0 volt pins.

Here’s the complete list (refer to the photo in Figure 2, Water Level Notifier

parts, on page 25):

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 1—Have your house email you ...when water levels rise precipitously to give you

enough time to prevent flood damage. This project can also be used to monitor water levels

in dehumidifiers, air conditioners, and similar devices.

1. An Arduino Uno

2. An Ethernet shield1

3. A flex sensor2

4. A 10k ohm resistor3

1. http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&prod-

ucts_id=201

2. http://www.sparkfun.com/products/8606

3. http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104

24 • Chapter 3. Water Level Notifier

report erratum • discuss

http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=201
http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=201
http://www.sparkfun.com/products/8606
http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 2—Water Level Notifier parts

5. A 1-inch fishing bobber

6. Three wires (power, ground, and analog pin 0) trimmed to desired length

7. A 9-volt power supply to power the Arduino and Ethernet shield once

untethered from the USB cable

8. A pole or wood plank to attach and hang the flex resistor from

9. A web server running PHP 4.3 or higher (not pictured)

You will also need a standard A-B USB cable (not pictured) to connect the

Arduino to the computer and an Ethernet cable (also not pictured) to connect

the Ethernet shield to your network.

We will be reusing the Arduino and Ethernet shield again in several other

projects, so—not including the cost of these two items—the remaining hard-

ware expenses should be under twenty dollars. Considering the peace of mind

and the ease with which you can build further ideas upon this concept, this

is money well spent.

report erratum • discuss

What You Need • 25

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Arduino Ethernet

Would you prefer a board that combines the Arduino Uno and the Arduino Ethernet

shield into a single package? The Arduino Uno Ethernet may be what you’re looking

for.a However, the board still needs to reserve digital pins 10 through 13 for the

Ethernet module, just like the separate Ethernet shield does. The Arduino Uno Eth-

ernet also requires an FTDI cable to interface with a computer rather than the more

popular A-B USB cable.b The biggest advantage that this board has to offer is the

ability to combine Ethernet services with another Arduino shield, assuming that

shield does not require the same pin resources that the Ethernet hardware requires.

a. http://www.adafruit.com/products/418

b. https://www.adafruit.com/products/70

3.2 Building the Solution

Before the Water Level Notifier can start broadcasting alerts, we need to

complete the following tasks:

1. Attach wires and a resistor to the exposed sensor leads on one end of the

flex resistor and the fishing bobber on its other end.

2. Connect the leads of the flex sensor to an analog pin of an Arduino.

3. Write a program (i.e., sketch) for the Arduino that will monitor changes

in the flex sensor readings. It should trigger an event when a large-enough

deviation from the initial value is detected.

4. Attach an Ethernet shield to the Arduino so that the sketch can commu-

nicate with a web server running PHP.

5. Write a PHP script that will capture incoming values from the Arduino.

When the water level has changed, it should format a message and send

an email alert to the intended recipient, who will need to react quickly to

the alert!

We will begin by assembling the hardware and testing out the flex sensor

measurements.

3.3 Hooking It Up

Let’s start by making sure our flex sensor works the way we intend it to.

Connect the positive lead of the sensor to the Arduino’s 5.0-volt pin using a

wire. When looking at the flex sensor standing on its end, the positive lead

is the trace that runs vertically. The negative lead is the one that looks like

26 • Chapter 3. Water Level Notifier

report erratum • discuss

http://www.adafruit.com/products/418
https://www.adafruit.com/products/70
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

the rungs of a ladder. Connect the negative lead to the analog 0 pin with

another wire. Lastly, bridge the analog 0 pin to the ground pin using the 10k

ohm resistor to dampen the flow of current through the circuit. Refer to Figure

3, Water Level Notifier wiring diagram, on page 28, to make sure you attach

the wires and resistor to the correct pins.

Attach the bobber to the end of the flex sensor. Most bobbers come with a

retractable hook that can be fastened to the plastic tip of the sensor. If the

bobber doesn’t stay affixed to the sensor, you can also use hot glue or heat

shrink tubing to help keep the bobber attached. Just be careful not to damage

the sensor when heating it with these affixing solutions. You can also try duct

tape as a safe alternative, though the tape may lose its grip over time.

Use plenty of wire so you have enough length to safely mount the Arduino

and power source far away from the water source. The Arduino that I have

monitoring my sump pit is sitting in a hobby box mounted on the wall several

feel above the sump pit, and the two wires attached to the flex resistor are

about two meters (roughly six feet) in length.

Now that the Arduino has been wired up, we can work on the logic of what

the hardware is supposed to do for us. We will begin with a quick test program

that will verify that the flex sensor is connected correctly and working properly.

3.4 Sketching Things Out

Before we start writing code, we first need to make sure we can communicate

with the Arduino. Then we will learn how to collect and act upon data sent

by the flex sensor with a program (what the Arduino community prefers to

call a sketch).

The first sketch we write will detect when the flex resistor values have changed.

If the change is large enough (in other words, if water is making the resistor

bend), we will transmit a request to a PHP server that will process the request.

That server will then send out an email notifying us of the change.

We will build the sketch incrementally, first by connecting the flex sensor to

the Arduino and collecting values when the sensor is straight and then when

it bends in both directions. Once these values have been identified, we will

write conditional statements that will call functions to send HTTP GET

statements containing data we will include in the email alert.

report erratum • discuss

Sketching Things Out • 27

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 3—Water Level Notifier wiring diagram

Configuring an Arduino

We will use the Arduino IDE to write, compile, and download our code into

the Arduino. For those who would like a more comprehensive introduction

to Arduino programming, read Maik Schmidt’s excellent Arduino: A Quick

Start Guide [Sch11].

If you are already familiar with the Arduino or are willing to hang on for the

ride, let’s get started by launching the Arduino IDE. Check to ensure that

your Arduino is connected via USB cable and recognized and selected accord-

ingly on one of the serial ports identified by the Arduino IDE’s Tools→Serial

Port menu. You can perform a quick test of your configuration with the LED

Blink example program located in the Arduino IDE’s File→Examples→1.Basics

→Blink menu. Upload it to the attached Arduino and check to see that it

executes correctly.

If it fails to do so, first verify that the Arduino is correctly plugged into the

computer and powered by the USB. If it is, check next to be sure you’ve

selected the correct serial port in the Arduino IDE and highlighted the right

type of Arduino board in the Tools→Board. A few correctly placed mouse

clicks on either of these settings usually fixes the problem.

The Flex Sensor Sketch

Now that the Arduino is connected and tested, we can write a sketch that will

validate and interpret the bending of the flex sensor. We will begin by defining

a few constants that we will refer to in the program.

28 • Chapter 3. Water Level Notifier

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Since we have to account for the sensor bending in either direction, we will

define two named constants that will be used to set the upper and lower

threshold limits.

We place these constants at the beginning of the sketch so they’re easier to

locate in case we need to edit these values later on. By convention, defined

constants are also all uppercase so that they are easier to identify in the code.

Let’s call them FLEX_TOO_HI and FLEX_TOO_LOW. The range between these upper

and lower limits will depend on the degree of flex that is optimal for your own

scenario. I prefer a variance of plus or minus five units to allow a minor

amount of bend before the notification event is triggered. Having such a range

will allow us to account for minor environmental effects like a light breeze or

a low-grade vibration.

We also need to account for the Arduino’s onboard LED and the analog pin

that the flex sensor is attached to.

• FLEX_TOO_HIGH is the value of the assigned analog pin when the flex sensor

is bent forward past this threshold.

• FLEX_TOO_LOW is the value of the assigned analog pin when the flex sensor

is bent backward past this threshold.

• ONBOARD_LED is assigned to the Arduino’s onboard LED located at pin 13.

We will use it provide us with a visual indicator when the flex resistor has

deviated far enough to send an alert. This allows us to use the Arduino’s

onboard LED as a kind of visual debugger so that we can visually confirm

that the flex events are being detected.

• FLEX_SENSOR is connected to the analog pin on the Arduino that the flex

resistor is connected to. In this case, that value is 0 because the resistor

is connected to pin 0.

These constants will be defined at the beginning of the sketch.

Download WaterLevelNotifier/WaterLevelSensor.pde

#define FLEX_TOO_HI 475
#define FLEX_TOO_LOW 465
#define ONBOARD_LED 13
#define FLEX_SENSOR 0

Now we will create two variables to capture the changing value and state of

the flex resistor and set their initial values to zero.

• bend_value will store the changing analog values of the flex resistor as it

bends.

report erratum • discuss

Sketching Things Out • 29

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

• bend_state is the binary condition of the flex sensor. If it’s straight, its value

is equal to zero. If the flex resistor deviates either direction, we will set its

state to one.

These variables will follow after the define statements we wrote earlier.

Download WaterLevelNotifier/WaterLevelSensor.pde

int bend_value = 0;
byte bend_state = 0;

With the constants defined and the variables initialized, we need to set up

the serial port to monitor the continuous stream of values being polled in the

main program’s loop. The onboard LED also has to be configured so we can

see it turn on and off based on the bend_state of the flex resistor.

Download WaterLevelNotifier/WaterLevelSensor.pde

void setup()
{

// for serial window debugging
Serial.begin(9600);
// set pin for onboard led
pinMode(ONBOARD_LED, OUTPUT);

}

With the upper and lower flex bending limits defined, we need a routine that

will check to see if these limits have been exceeded. If they have, we will turn

on the Arduino’s onboard LED. When the flex resistor returns to its resting

straight position, we will turn the LED off.

Download WaterLevelNotifier/WaterLevelSensor.pde

void SendWaterAlert(int bend_value, int bend_state)
{

digitalWrite(ONBOARD_LED, bend_state ? HIGH : LOW);
if (bend_state)

Serial.print("Water Level Threshold Exceeded, bend_value=");
else

Serial.print("Water Level Returned To Normal bend_value=");
Serial.println(bend_value);

}

Note the first line of this code block: digitalWrite(ONBOARD_LED, bend_state ? HIGH :
LOW);. This ternary operation polls the current state of the flex resistor based

on the value (0 or 1) that we passed to the function. The conditional statement

that follows prints out an appropriate message to the Arduino IDE’s serial

window. If the bend_state is true (HIGH), the flex resistor has been bent past

the limits we defined. In other words, water has exceeded the threshold. If

it’s false (LOW), the flex resistor is straight (i.e., the water level is not rising).

30 • Chapter 3. Water Level Notifier

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

All that is left to write is the program’s main loop. Poll the FLEX_SENSOR

pin (currently defined as analog pin 0) every second for any increase or

decrease in value. When a flex event is detected, print the bend_value to the

serial port so we can see it displayed in the Arduino IDE’s serial window.

Download WaterLevelNotifier/WaterLevelSensor.pde

void loop()
{

// wait a second each loop iteration
delay(1000);
// poll FLEX_SENSOR voltage
bend_value = analogRead(FLEX_SENSOR);

// print bend_value to the serial port for baseline measurement
// comment this out once baseline, upper and lower threshold
// limits have been defined

Serial.print("bend_value=");
Serial.println(bend_value);

switch (bend_state)
{
case 0: // bend_value does not exceed high or low values

if (bend_value >= FLEX_TOO_HI || bend_value <= FLEX_TOO_LOW)
{

bend_state = 1;
SendWaterAlert(bend_value, bend_state);

}
break;

case 1: // bend_value exceeds high or low values
if (bend_value < FLEX_TOO_HI && bend_value > FLEX_TOO_LOW)
{

bend_state = 0;
SendWaterAlert(bend_value, bend_state);

}
break;

}
}

The main loop of the sketch will poll the value of the flex resistor every second.

A switch statement tests the condition of the flex resistor. If its last status was

straight (case 0:), check to see if it has since bent beyond the upper and lower

threshold limits. If so, set the bend_state accordingly and call the SendWaterAlert
function. Conversely, if the resistor’s last status was bent (case 1:), check to

see if it’s now straight. If it is, set the bend_state variable to zero and pass that

new state to the SendWaterAlert function.

report erratum • discuss

Sketching Things Out • 31

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Depending on the type of flex sensor and Ethernet shield used along with the

voltage pin selected, your baseline value may be different from the baseline

one I recorded. My flex sensor reported a value of 470.

Note the use of semicolons to mark the end of a line of instruction and

brackets to identify conditional blocks. Save the file. It’s also a good idea to

place this and all other code you write under your preferred choice of version

control before proceeding. I recommend Git,6 but others like Mercurial and

Subversion are certainly better than any non–version controlled alternative.

Later on, we will ask the SendWaterAlert function to call another function that

will connect to a designated PHP server. This in turn will send an email alert

that will contain the appropriate alert and the bend_value being monitored. But

before we do, we will verify that our threshold test is working by monitoring

the messages sent to the Arduino IDE’s serial window.

Run the Sketch

Save and click the Verify button in the Arduino IDE’s toolbar. This will compile

the sketch to check for any syntax errors. After confirming that there are

none, send the sketch to the Arduino by clicking the Upload button on the

toolbar. You should see the Arduino’s onboard LED flash a few times, indicat-

ing that it is receiving the sketch. When the rapid flashing stops, the sketch

should be running.

Open up the Arduino IDE’s Serial Monitor window. Assuming you haven’t yet

commented out the Serial.print("bend_value="); statement in the main loop of the

sketch, observe the numbers that are continuously scrolling upward at a rate

of roughly once a second on the serial monitor’s display. If the characters

being displayed in the window look like gibberish, make sure to select the

correct baud rate (in this case, 9600) in the serial monitor’s drop-down list

located in the lower right corner of the serial monitor window. Take note of

the values of the flex resistor when it is straight, bent forward, and backward.

Depending on the amount of electrical resistance and the type of hardware

being used, update the FLEX_TOO_HIGH and FLEX_TOO_LOW constants to better

calibrate them to the changing values you are seeing in the serial window.

Once these defined amounts have been entered, save the program and upload

again to the Arduino, performing the same procedure as before. It may take

two or three tries to narrow in on the high and low values that help determine

the bend state of the flex resistor.

6. http://git-scm.com/

32 • Chapter 3. Water Level Notifier

report erratum • discuss

http://git-scm.com/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

With the modified upper and lower limits set to best suit your particular

configuration, observe the Arduino’s onboard LED to ensure that it lights up

when the flex resistor bends far enough forward or backward and turns off

when the resistor is straightened back to its original position.

Testing the Sketch

When you are confident that the hardware setup and the uploaded Arduino

sketch are behaving correctly, it’s time to try a simple water test by filling up

a bowl with water and dipping the bobber into the water while holding the

base of the flex resistor between your thumb and forefinger. As an extra pre-

caution, wrap any exposed solder connecting the two wires to the flex resistor

in waterproof electrical tape. I suggest wrapping the tape several layers thick,

both to have a solid base to hold the resistor as well as to protect it from any

errant drops of water that may accidentally splash or spill.

After properly and safely setting up the test, verify that as the buoyancy of

the water deflects the bobber attached to the flex resistor, the resistor bends

far enough in either direction to turn the LED light on.

Be careful not to submerge the exposed flex resistor. While the amount of

current flowing through the Arduino is relatively low, water and electricity

can make for a deadly combination. Place any electronics, including the flex

resistor and attached bobber, in a sealed plastic bag with enough room to

allow the flex resistor to bend. Use a high degree of caution to make absolutely

sure to not get any of the exposed wiring or electrical connections wet. Doing

so could damage your equipment or, even worse, you.

The base functionality of the water level notifier is complete. However, its

method of communicating a rise in water height is limited to a tiny LED on

the Arduino board. While that may be fine for science projects and people

who work right next to the Arduino monitoring the water source in question,

it needs to broadcast its alert beyond simple light illumination.

Receiving an email notification makes more sense, especially when the location

of water measurement is somewhere in the home that is not frequently visited.

Perhaps the detector will even operate at a remote location, such as when

monitoring the status of a sump pit at a vacation home after a heavy rain.

To do so, we will need to clip on an Ethernet shield to the Arduino and write

some code to send an email when the bend threshold is crossed. But before

we add more hardware to this project, we first need to set up a web-based

email notification application that our Arduino sketch can call upon when it

needs to send out an alert.

report erratum • discuss

Sketching Things Out • 33

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

3.5 Writing the Web Mailer

Libraries for sending email directly from the Arduino abound. But these all

rely on a stand-alone, dedicated email server providing the mail gateway. So

even though the mailer code can be compiled into the Arduino sketch, the

solution still relies on an intermediary to send messages from the Arduino to

the email inbox of the intended recipient(s).

If you have access to an SMTP mail server that you can connect to for out-

bound message transmission, check out Maik Schmidt’s Arduino: A Quick

Start Guide [Sch11]. His book supplies the necessary code and walkthrough

on how to make this work. If you don’t have access to a dedicated SMTP

gateway, we can use an Internet web hosting service that supports sending

email from a PHP script.

For this project, I have chosen a popular, preconfigured PHP-enabled web

server with an SMTP outbound gateway, a configuration that popular website

hosting companies like Dreamhost.net, Godaddy.com, and others offer to

their customers.

The PHP script for sending email consists of only a few short lines of code.

First, we will pass two parameters to the server: the type of alert to send and

the recorded value of the flex resistor. Then we will compose a mail message

containing the recipient’s email address, the subject, and the message con-

tents. Then we will send the email.

Download WaterLevelNotifier/wateralert.php

<?php
// Grab the type of alert to email and
// the current value of the flex resistor.
$alertvalue = $_GET["alert"];
$flexvalue = $_GET["flex"];

$contact = 'your@emailaddress.com';

if ($alertvalue == "1") {
$subject = "Water Level Alert";
$message = "The water level has deflected the flex

resistor to a value of " . $flexvalue . ".";
mail($contact, $subject, $message);
echo("<p>Water Level Alert email sent.</p>");
} elseif ($alertvalue == "0") {
$subject = "Water Level OK";
$message = "The water level is within acceptable levels.

Flex resistor value is " . $flexvalue . ".";
mail($contact, $subject, $message);
echo("<p>Water Level OK email sent.</p>");

34 • Chapter 3. Water Level Notifier

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/wateralert.php
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Why Use a PHP-Enabled Web Server for This Project?

Quite simply, because they are the most prevalent web-hosting server configurations.

While I personally prefer a more modern web application framework like Django or

Ruby on Rails hosted within a virtual private server (VPS), these technologies are not

as universally supported by hosting providers compared to PHP. This wouldn’t be a

problem if we hosted the web server within our own network (which we in fact do in

Chapter 7, Web-Enabled Light Switch, on page 107) or had access to a VPS. But given

the setup configuration overhead associated with running both a web server and an

email server that correctly sends outbound SMTP messages, it’s easier to go this route

for our first project.

Sending email via PHP can be done with a single PHP file in a single line of code. That

said, if you are interested in writing functional equivalents for your personal favorite

web frameworks, go for it! If you succeed, please considering sharing your discoveries

with the Programming Your Home book discussion community.

}

?>

The script calls the built-in PHP mail function that passes three required

parameters: recipient(s), subject, and the body of the email. Yes, it’s that

simple.

Save the code to a file called wateralert.php in the root web directory of your

PHP server. You can test the script by opening your web browser and visiting

http://MYPHPSERVERNAME/wateralert.php?alert=1&flex=486. The page

should return a Water Level Alert email sent. message in the browser window, and

a corresponding email message should appear in the defined recipient’s inbox.

If it doesn’t, check your PHP server settings and make sure that your web

server is properly configured to use a working email gateway. If you’re still

not having luck with the message test, contact your website hosting provider

to make sure your hosted solution is correctly configured for PHP email

messaging.

By abstracting the delivery mechanism from the logic running in the Arduino,

we can easily modify the message recipients and contents.

Now that we have a working message gateway, we can hook up the Arduino

to an Ethernet shield so the deflected flex resistor can talk to the rest of the

world.

report erratum • discuss

Writing the Web Mailer • 35

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Securing Your Notifications

If you plan on having this PHP script provide a permanent service for Arduino message

passing, consider adding a layer of security to the transmission signal so that only

the Arduino can trigger the message condition.

This could be done by something as simple (though weak) as a password value passed

in the HTTP GET parameters or by a more secure hash transaction that trades an

authentication conversation between the Arduino and the web server. While adding

a good security routine is beyond the scope of this project, it’s a good idea to incorpo-

rate such functionality so that your publicly exposed PHP email entry point isn’t

abused by unwelcome connections.

3.6 Adding an Ethernet Shield

Attach the Ethernet shield to the Arduino by lining up the base pins so that

the Ethernet jack is on top and facing the same direction as the Arduino USB

jack. Reconnect the wires to the 5V and analog-in 0 (A0) pins found on the

Ethernet shield just like you did when these wires were connected to the

Arduino.

Do the same for the 10k ohm resistor bridging across the ground (Gnd) and

A0 pins. Run your test again and check the values. In my tests, the base

value being read was different compared to the Arduino without the Ethernet

shield, and yours will likely reflect similar results. Since we’re more interested

in the deviation from this base value than the calibration of the actual value

itself, it’s important to use the unbent resistor value in the code and then

determine how far of a plus or minus deflection from this base value is accept-

able before transmitting the alert.

Now that our hardware is network-enabled, we can add the necessary code

to our sketch that transmits the flex sensor status to our PHP server.

Coding the Shield

We will programmatically send data via the Ethernet shield. But we first must

include a reference in the sketch to both the Arduino Ethernet library and

its dependency, the Serial Peripheral Interface (SPI) library.7 These two libraries

contain the code needed to initialize the Ethernet shield and allow us to ini-

tialize it with network configuration details. Both libraries are included in the

Arduino IDE installation, so the only thing we need to do is import the SPI.h

7. http://arduino.cc/en/Reference/Ethernet and http://www.arduino.cc/playground/

Code/Spi, respectively.

36 • Chapter 3. Water Level Notifier

report erratum • discuss

http://arduino.cc/en/Reference/Ethernet
http://www.arduino.cc/playground/Code/Spi
http://www.arduino.cc/playground/Code/Spi
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

and Ethernet.h libraries via the #include statement. Add these statements at the

beginning of the sketch:

Download WaterLevelNotifier/WaterLevelNotifier.pde

#include <SPI.h>
#include <Ethernet.h>

With the Ethernet library dependency satisfied, we can assign a unique Media

Access Control (MAC) and IP address to the shield. While DHCP libraries are

available from the Arduino community, it’s easier just to set the shield with

a static IP address.

For example, if your home network uses a 192.168.1.1 gateway address, set

the address of the shield to a high IP address like 192.168.1.230. If you plan

on using this address as a persistent static IP, refer to your home router’s

documentation on how to set a static IP range within a DHCP-served network.

Download WaterLevelNotifier/WaterLevelNotifier.pde

// configure the Ethernet Shield parameters
byte MAC[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xEF };

// replace this shield IP address with one that resides within
// your own network range
byte IPADDR[] = { 192, 168, 1, 230 };

// replace with your gateway/router address
byte GATEWAY[] = { 192, 168, 1, 1 };

// replace with your subnet address
byte SUBNET[] = { 255, 255, 255, 0 };

// replace this server IP address with that of your PHP server
byte PHPSVR[] = {???, ???, ???, ???};

// initialize a Client object and assign it to your PHP server's
// IP address connecting over the standard HTTP port 80
Client client(PHPSVR, 80);

Assign constants for the static MAC and IP addresses that will be used by

the Ethernet shield. Add the address of your Internet router to the GATEWAY

value, and add your SUBNET value as well (most home network subnets are

255.255.255.0). The IP address of your PHP server also has to be declared

prior to the sketch’s setup routine.

With the constants declared, we can now properly initialize the Ethernet

shield in the setup section of the sketch.

Download WaterLevelNotifier/WaterLevelNotifier.pde

void setup()

report erratum • discuss

Adding an Ethernet Shield • 37

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Arduino on Linux and the Ethernet Library

If you are using the Linux version of the Arduino IDE, you might encounter a problem

with the Ethernet reference library. The problem manifests itself by transmitting

garbled broadcasts from the Ethernet shield. Fortunately, a fork of the Ethernet library,

aptly named Ethernet2, is available for download.a Refer to Appendix 1, Installing Arduino

Libraries, on page 211, for more details. Once the Ethernet2 library is installed, replace

the broken Ethernet.h in the original #include statement with #include Ethernet2.h instead.

a. http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/

Ethernet2/

Ethernet Shield DNS and DHCP

The Ethernet library does not natively include any DNS or DHCP functionality. This

capability is expected to arrive in an upcoming release of the Arduino platform. But

until that day arrives, we cannot use a server name like www.mycoolwaterlevelpro-

ject.com for a web server address and must use the server’s assigned IP address

instead.

Thanks to the efforts of Arduino enthusiast George Kaindl, using DNS and DHCP

with an Ethernet shield is possible. If you don’t mind the extra overhead these libraries

add to the Arduino’s already constrained program storage capacity, check his Arduino

Ethernet libraries for more details.a

a. http://gkaindl.com/software/arduino-ethernet

{
// for serial window debugging
Serial.begin(9600);

// set up on board led on digital pin 13 for output
pinMode(ONBOARD_LED, OUTPUT);

// Initialize Ethernet Shield with defined MAC and IP address
Ethernet.begin(MAC, IPADDR, GATEWAY, SUBNET);
// Wait for Ethernet shield to initialize
delay(1000);

}

Note the use of the Ethernet object in Ethernet.begin(MAC, IPADDR, GATEWAY, SUBNET);.
This is where the Ethernet shield gets initialized with the assigned Media

Access Control (MAC) address and IP Address.

38 • Chapter 3. Water Level Notifier

report erratum • discuss

http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/Ethernet2/
http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/Ethernet2/
http://gkaindl.com/software/arduino-ethernet
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

OK, we have a working network connection. Now we can move on to the next

step of requesting the appropriate emailer page on your PHP server when the

bend thresholds have been exceeded.

Sending a Message

Up to this point, we have told the Arduino to report the analog values being

generated by the flex resistor, initialized the Ethernet shield to connect the

Arduino to our network, and added stubs for routines to call out to our PHP

server script. Now it’s time to add that routine. We’ll call it ContactWebServer.

The ContactWebServer routine will take the same two parameters we captured

for the SendWaterAlert function, namely band_value and bend_state. Add the ContactWeb-
Server(bend_value, bend_state); line at the end of the SendWaterAlert function, since

we will talk to the designated PHP web server address each time the flex

resistor state changes.

We’re almost done. We just have to write the body of the ContactWebServer
function. This will consist of connecting to the PHP web server and printing

the well-formed HTTP GET string to the server. The string will contain and

pass the values of the bend_state and bend_value variables. These will then be

parsed on the server side and the PHP function will respond in kind.

Download WaterLevelNotifier/WaterLevelNotifier.pde

void ContactWebServer(int bend_value, int bend_state)
{

Serial.println("Connecting to the web server to send alert...");

if (client.connect())
{

Serial.println("Connected to PHP server");
// Make an HTTP request:
client.print("GET /wateralert.php?alert=");
client.print(bend_state);
client.print("&flex=");
client.print(bend_value);
client.println(" HTTP/1.0");
client.println();
client.stop();

}
else
{

Serial.println("Failed to connect to the web server");
}

}

It’s time to test the completed sketch. Download it to the Arduino, open up

a serial monitor window, bend the flex resistor, and watch the messages.

report erratum • discuss

Adding an Ethernet Shield • 39

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Check your recipient’s inbox for the corresponding email messages. Did you

receive the “Water Level Alert” and “Water Level OK” email messages that

correspond to the notifications you saw in the serial monitor window? If not,

make sure that your Arduino is connected to your home network by pinging

the IP address you assigned.

Test the PHP email URL and verify that you receive an email when you enter

http://MYPHPSERVER/wateralert.php?alert=1&flex=486 into your web

browser. When everything works as expected, we will be ready to put the

finishing touches on this project and make it fully operational.

3.7 All Together Now

We’re nearing the home stretch. Your hardware should look like the setup

pictured in Figure 4, An assembled water level notifier, on page 41. All that

remains is mounting the flex resistor securely and safely in place so that its

flexion is accurately detected and not impeded by any obstacles.

The base where the two wires attach to the exposed flex resistor leads needs

to be firmly stabilized so that when the water level rises and pushes the

bobber upward, the base does not pivot at its fulcrum. If it does pivot, the

flex resistor will remain straight and the running Arduino sketch will fail to

send the appropriate alert notification. Keep the base stabilized and prevent

it from pivoting.

Try using hot glue, heat shrink tubing, or duct tape. If the base still moves,

try attaching a small wood chip splint on each side of the base of the flex

resistor. Extend the splint length-wise approximately two centimeters above

and below the base. Then snugly wrap the splint several times with electrical

tape. Tack the top of the splinted base to a small wood post (such as that cut

from a typical two-by-four piece of lumber) that spans the diameter of the

hole containing the water source.

In the case of a sump pit, you will need to remove the cover of the pit, measure

the interior diameter and visit a lumberyard or hardware store that can cut

the wood for you. Add an extra centimeter to the cut so that the beam can

be wedged tightly as it spans the pit.

Similar principles apply in the case of a dehumidifier. Instead of using a large

piece of wood to act as the mounting base support, use the bottom, pants-

hanging portion of an old wooden hanger that can be cut to slightly longer

than the diameter of the dehumidifier’s water collection bucket. Mount the

base of the splinted flex resistor in the center of the wood support. Depending

40 • Chapter 3. Water Level Notifier

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 4—An assembled water level notifier

on the depth of the dehumidifier’s bucket, you may need to raise the base of

the flex resistor higher so that the alert doesn’t trigger prematurely when the

bucket is only half-full.

Once you’re satisfied with the stability of the mounted resistor, place the

bobber and flex resistor inside a small plastic bug, such as a locking seal

sandwich bag. This will keep the resistor dry and protected if the water level

rises excessively. Run the wires attached to the resistor a meter or more from

the measured water source and attach them to the Arduino/Ethernet shield

assembly. Power the Arduino using the 9-volt power supply and attach the

network cable to the Ethernet shield. Several seconds after you power up the

Arduino, perform a quick bend test. If you received the water alert and all-clear

messages in your email inbox, then you have succeeded!

Replace the cover of the water containment vessel you are monitoring and

wait for your device to alert you to rising water levels.

3.8 Next Steps

Congratulations on completing the first Arduino-assisted home automation

project in this book. You have already learned a lot of reusable ideas in this

report erratum • discuss

Next Steps • 41

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

project. You programmed an Arduino, captured and processed data from a

flex resistor, and sent emails with the help of a PHP-enabled web server and

the Arduino Ethernet shield. We will be applying these concepts again in some

of the other projects in this book.

The cool thing about designing and building your own projects is that they

can each be tailored to your own exacting requirements. Prefer a tweet instead

of an email alert when the water level exceeds the measurement threshold?

No problem. Replace the email functionality with the code from the Tweeting

Bird Feeder project later in this book. Want an overt visual indicator instead

of an electronic message, something like a blockbuster action movie warning

lamp that flashes on and off? Easy. Hook up a switch to the lamp that can

be controlled to turn on and off at regular intervals with code lifted from the

web-enabled light switch project.

Here are a few other ideas to further extend the use of a flex resistor in the

home:

• Use the variable analog data that is emitted from the resistor to determine

not only when it has been flexed but also to what degree. This could be

useful in a rain gauge application used to track incremental measurements

of rainfall based on the deflection of the resistor by the buoyant bobber.

• Add an hourly data transmission to the sketch and a routine in the PHP

component to receive the message. Current bend values should be

transmitted in this message as well. Check the values for anomalies, such

as having no value (0) if it’s broken or something greater than 999 if there

is a short circuit. Send an email alert when such threshold values are

detected. Additionally, if the transmission isn’t received in a two-hour

time frame, send an email informing the recipient of that fact. This

enhanced monitoring will let you know that your hardware may be having

issues and needs further attention.

• Temperature variations may affect the calibration of the flex sensor. Attach

a temperature sensor and dynamically change the trigger point values

based on the surrounding ambient temperature readings.

• Concerned about losing roofing tiles, shingles, or siding to the wind?

Replace the bobber with a wind cup like those found mounted on weather

stations sold by scientific instrument supply companies, set it up outside,

and receive an email alert when the wind is becoming excessively strong.

• If you use a flap door for your pet, anchor one end of the flex resistor to

the flap frame and slide the untethered end into a small vinyl tube

42 • Chapter 3. Water Level Notifier

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

attached to the flap to allow the resistor to slide freely but still flex when

the door flap is being pushed open on either end. Combine the sensor

trigger with a web cam capture so you can verify that it’s your family pet

coming in and out of the house and not some uninvited guest.

report erratum • discuss

Next Steps • 43

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 4

Electric Guard Dog

Remember the last time you visited a home with a big dog? Did hearing the

canine barking at the sound of a doorbell make you think twice before entering

the premises? Most dog owners appreciate the vigilant home surveillance that

their pets provide. These furry friends have a knack of detecting motion and

springing immediately into action, barking and bumping their snouts against

window curtains and doors in hyperactive effort to see who or what is outside.

With the Electric Guard Dog, you will be able to derive a similar security

benefit minus the hassles of cleaning up dog hair afterward (Figure 5, Deter

unwanted visitors with the Electric Guard Dog, on page 46).

This project combines the Arduino board with a wave shield, a Passive InfraRed

(PIR) sensor, and a servo motor. When programmed and activated, the assem-

bly will give the illusion of an angry dog eager to pounce on an unwanted

trespasser. A small rod attached to the arms of a servo motor will bob up and

down when the servo rotates. A wad of cotton cloth attached to the other end

of the rod will be positioned against a window curtain. When motion is detect-

ed, the servo will rotate, moving the rod up and down. The cloth attached to

the other end of the rod will bump against the curtain in time with random

barks and growls coming from a speaker plugged into the wave shield. This

sound and motion will give the illusion of a noisy dog trying to poke and prod

with its nose behind a door or window curtain.

The completed project is fully portable, since the Electric Guard Dog can be

positioned in any doorway, window, or room that you want to get someone

or something’s attention when the motion detector is triggered.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 5—Deter unwanted visitors with the Electric Guard Dog.

4.1 What You Need

This project requires only a few components. The total cost for all the parts

should be under a hundred dollars. But since all the parts can be reused in

other projects in this book and in future DIY efforts, it is a very reasonable

investment consideration. To construct an Electric Guard Dog, you will need

the following (see Figure 6, Electric Guard Dog parts, on page 47):

1. An Arduino Uno

2. An Adafruit music and sound add-on pack for Arduino (includes wave

shield, speaker, wire, and SD card)1

3. A high-torque standard servo2

4. A Passive InfraRed (PIR) motion sensor

5. A 9-volt power supply to power the Arduino once untethered from the

USB development cable

6. A sturdy wooden rod with cotton or rubber affixed to the tip to serve as

a surface-protecting end-cap

7. Wire, twist ties, or rubber bands to affix the wooden rod to the servo gear

1. http://www.adafruit.com/products/175

2. http://www.adafruit.com/products/155

46 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://www.adafruit.com/products/175
http://www.adafruit.com/products/155
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 6—Electric Guard Dog parts

You will also need a standard A-B USB cable to connect the Arduino to the

computer. The servo can be purchased at a local hobby shop, and the PIR

can be purchased from a number of electronic parts retailers, including Fry’s

and Radio Shack, as well as from online electronics retailers like Adafruit or

Sparkfun.

Let’s start by connecting the project’s three main components to make them

collectively act in a more aggressive manner.

4.2 Building the Solution

This is one of the easier projects in the book, since it relies entirely on the

Arduino, an add-on shield, a sensor, and a servo motor. When constructed,

the completed assembly should look similar to the one shown in Figure 7, An

Electronic Guard Dog, on page 49. Here’s how we will build it:

1. Attach an Adafruit wave shield to the Arduino.

2. Connect a PIR to the wave shield’s power, ground, and one of the available

digital pins.

report erratum • discuss

Building the Solution • 47

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Joe asks:

Is There an Arduino Shield That Can Play MP3

Files?

Yes! Electronics project retailer Sparkfun sells an Arduino board called the MP3 shield

that is similar in function to Adafruit’s wave shield.a However, due to the differences

in the libraries used, I will focus on the wave shield implementation and leave it to

our more adventurous readers to pursue Sparkfun’s MP3-based alternative on their

own. And for those who need an audio shield that plays even more sound file formats

like Windows Media Audio, MIDI, and Ogg Vorbis, the Maker Shed sells the Seeed

Music Shield, which nicely integrates audio file playback capabilities in a well-designed

shield.b

a. http://www.sparkfun.com/products/9736

b. http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED14

3. Connect a servo to the wave shield’s power, ground, and another one of

the available digital pins.

4. Download additional Arduino libraries that allow the wave shield to be

easily controlled while preventing resource conflicts with sending instruc-

tions simultaneously to the servo.

5. Write a sketch that randomly moves the servo and plays back a snippet

of audio when motion is detected by the PIR.

If you haven’t already assembled and tested your wave shield, follow Ladyada’s

instructions on how to do so.5 When you have confirmed that it works, we

can enhance the board by attaching the PIR sensor and servo motor actuator

to the available wave shield’s pins.

4.3 Dog Assembly

Take a look at the schematic in Figure 8, Wiring diagram for the Electric Guard

Dog, on page 50. The graphic shows wiring plugging into the wave shield. The

wave shield is stacked on top of the Arduino board. Note that the wave shield

uses several of the pins for its own use to interact with the Arduino, which

is why not all passthrough pins are available for the sketch. Closely follow

the wiring diagram and you should not have a problem.

5. http://www.ladyada.net/make/waveshield/

48 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://www.sparkfun.com/products/9736
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED14
http://www.ladyada.net/make/waveshield/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 7—An Electronic Guard Dog

Attach the positive lead of the PIR to the 3.3v pin on the wave shield. Connect

the negative lead to one of the wave shield’s available ground pins. Then attach

the control wire (the middle pin/wire on the PIR) to the wave shield’s digital

pin 12.

Next, attach the servo’s positive wire to the wave shield’s 5v pin. Connect the

negative lead to the wave shield’s other available ground pin. Finally, connect

the control wire to the wave shield’s digital pin 11.

For brief testing purposes, you can attach male pins to the wires and plug

them directly into the sockets on the wave shield. More reliable connections

can be achieved by using either male or female header pins instead. These

can be obtained directly from various Arduino board suppliers. If you plan

on using the wave shield exclusively for this project, you can solder the wiring

permanently to the shield for the most stable electrical connection possible.

There is one more step we should take before writing the sketch. We need to

either record and digitize a dog growling and barking in various ways or

legally download audio samples from the Internet of snarling, barking dog

sounds.

report erratum • discuss

Dog Assembly • 49

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 8—Wiring diagram for the Electric Guard Dog

The first option takes more time and requires access to a big dog that can

bark, snarl, and growl on command—with a microphone near its toothy

yapper, no less! While this requires a bit more extra work, the results produce

a more consistent and realistic effect. And because you know the source,

playback generates a more meaningful audio cue.

The second option of searching on the Internet for a variety of angry dog audio

samples is more convenient but rarely produces a consistent and believable

overall effect. This is especially true when the samples are acquired from a

variety of dog breeds. How can a dog have the toothy snarl of a Doberman

one minute and the yapping of a miniature poodle the next? Also, downloading

audio samples from the Internet has copyright implications that have to be

respected. One website that I recommend visiting is the Freesound Project,7

7. http://www.freesound.org

50 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://www.freesound.org
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Joe asks:

How Does a PIR Sensor Work?

A PIR detects motion by comparing two samples of infrared radiation being emitted

by a body warmer than the background environment it is moving against. When either

side of the sensor detects a greater value than the other, it sends a signal to the digital

out pin that motion has been detected. The IR sensor at the heart of a PIR is typically

covered by a dome-shaped lens that helps to condense and focus light so that it is

much easier for the sensor to detect infrared variations, and thus, motion.

For a more detailed explanation of the theory behind PIRs, visit Ladyada’s informative

web page on the subject.a

a. http://www.ladyada.net/learn/sensors/pir.html

which features a number of samples available under the Creative Commons

Sampling Plus license.

After you have obtained five audio clips using either approach, you need to

convert them to a format the wave shield can interpret. Based on the conver-

sion instructions on Ladyada’s website,8 samples must not exceed a 22KHz

16-bit mono PCM (WAV) format. You want the highest audio quality possible,

and there should be plenty of space on the SD card to store them. The audio

clips you select for the project should not exceed five seconds in duration so

they appear more synchronized with the servo motion when the audio is

played back.

You can use an audio editor like Audacity to import and convert and save

your audio clips to the correct format.9 Make sure they are compatible by

copying the converted files to the wave shield’s SD card and running the

dap_hc.pde sketch posted on Ladyada’s website.10 Note that we’re going to make

one change to Ladyada’s wave shield demo sketch. Instead of the newer

wavehc library it uses, we are going to use the older AF_Wave library. That way,

we can use Arduino community forum member avandalen’s MediaPlayer

library11—it makes working with wave shield sound files far easier. We will

take a closer look at this library and another Arduino community contributor’s

library for servos when we write the sketch in the next section.

8. http://www.ladyada.net/make/waveshield/convert.html

9. http://audacity.sourceforge.net/

10. http://www.ladyada.net/make/waveshield/libraryhc.html

11. http://www.arduino.cc/playground/Main/Mediaplayer

report erratum • discuss

Dog Assembly • 51

http://www.ladyada.net/learn/sensors/pir.html
http://www.ladyada.net/make/waveshield/convert.html
http://audacity.sourceforge.net/
http://www.ladyada.net/make/waveshield/libraryhc.html
http://www.arduino.cc/playground/Main/Mediaplayer
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

4.4 Dog Training

The sketch we write will monitor the PIR for any motion events. If movement

is detected, the shield will randomly play one of five different audio files stored

on the wave shield’s SD card. Simultaneously, the servo motor rotates up to

150 degrees, depending on the sound effect being played back. Attach a

wooden rod to the servo gear and the servo’s rotation will move the rod up

and down. When the rod is positioned behind a curtain, it will give the illusion

of a dog’s snout attempting to nudge the curtain aside so it can see who’s at

the door or window.

To begin, we need to include the MediaPlayer.h header file along with its two

dependencies, pgmspace.h (part of a memory management library included in

the Arduino’s standard installation) and util.h (part of the original wave shield’s

AF_Wave library). Because the MediaPlayer class relies on the AF_Wave library,

make sure you have already downloaded, unzipped, and copied the uncom-

pressed AF_Wave folder into the Arduino’s libraries folder.12

Next, create a new sketch in the Arduino IDE called ElectricGuardDog. Download

the MediaPlayer library from the Arduino playground website;13 extract the

zip archive; and place the unzipped MediaPlayer.h, MediaPlayer.pde, and MediaPlay-
erTestFunctions.pde files into the ElectricGuardDog folder created by the Arduino IDE

when it created the ElectricGuardDog.pde file. If you downloaded the project files

for the book, the Mediaplayer library file dependencies have already been pre-

bundled for you. The Mediaplayer library allows us to control audio file playback

very easily.

We will also need to call upon another custom library to operate the servo

motor. If you try to compile the sketch using the standard Arduino Servo class,

the program will fail with this error:

Servo/Servo.cpp.o: In function `__vector_11':
/Applications/Arduino.app/Contents/Resources/Java/libraries/Servo/Servo.cpp:103:
multiple definition of `__vector_11'

AF_Wave/wave.cpp.o:/Applications/Arduino.app/
Contents/Resources/Java/libraries/AF_Wave/wave.cpp:33: first defined here

What’s going on here? The AF_Wave library is taking over the vector interrupt

as the standard Servo library. Fortunately for us, Arduino community contrib-

utor Michael Margolis has written a library that gives the Arduino the ability

12. http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip

13. http://www.arduino.cc/playground/Main/Mediaplayer

52 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip
http://www.arduino.cc/playground/Main/Mediaplayer
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

to control up to eight servo motors simultaneously. By doing so, his library

also circumvents the duplicate resource problem exhibited by the original

Servo library when combined with a wave shield.

Download the ServoTimer2 library,14 unzip it, and copy the ServoTimer2 folder

into the Arduino libraries folder. Keep in mind that each time you add a new

library to the Arduino libraries folder, you need to restart the Arduino IDE so

the Arduino’s avr-gcc compiler will recognize it.

After the wave shield’s AF_Wave and servo motor’s ServoTimer2 library dependen-

cies have been satisfied, add these references to the beginning of the sketch:

Download ElectricGuardDog/ElectricGuardDog.pde

#include <avr/pgmspace.h>
#include "util.h"
#include "MediaPlayer.h"
#include <ServoTimer2.h>

Create several variables to store Arduino pin assignments and sensor/actuator

starting values.

Download ElectricGuardDog/ElectricGuardDog.pde

int ledPin = 13; // on board LED
int inputPin = 12; // input pin for the PIR sensor
int pirStatus = LOW; // set to LOW (no motion detected)
int pirValue = 0; // variable for reading inputPin status
int servoposition = 0; // starting position of the servo

Next, create two objects constructed from the MediaPlayer and ServoTimer2

libraries to more easily manipulate the servo motor and audio playback.

Download ElectricGuardDog/ElectricGuardDog.pde

ServoTimer2 theservo; // create servo object from the ServoTimer2 class
MediaPlayer mediaPlayer; // create mediaplayer object

// from the MediaPlayer class

Assign the variables we created to the Arduino pinModes in the sketch’s setup()
routine. Establish a connection to the Arduino IDE serial window to help

monitor the motion detection and audio playback events. Call the Arduino’s

randomSeed() function to seed the Arduino’s random number generator. By

polling the value of the Arduino’s analog pin 0, we can generate a better

pseudorandom number based on the electrical noise on that pin.

Download ElectricGuardDog/ElectricGuardDog.pde

void setup() {
pinMode(ledPin, OUTPUT); // set pinMode of the onboard LED to OUTPUT
pinMode(inputPin, INPUT); // set PIR inputPin and listen to it as INPUT

14. http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

report erratum • discuss

Dog Training • 53

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

theservo.attach(7); // attach servo motor digital output to pin 7
randomSeed(analogRead(0)); // seed the Arduino random number generator
Serial.begin(9600);

}

With the library, variable, object, and setup initialization out of the way, we

can now write the main loop of the sketch. Essentially, we need to poll the

PIR every second for any state changes. If the PIR detects motion, it will send

a HIGH signal on pin 12. When this condition is met, we power the onboard

LED and send a motion detection message to the Arduino IDE’s serial window.

Next, we generate a random number between 1 and 5 based on the seed we

created earlier. Based on the value generated, we then play back the designat-

ed audio event and move the servo motor a predefined amount of rotation.

After that, we wait a second before returning the servo to its starting position

and run the loop again. If the PIR fails to detect motion (that is, if the signal

on pin 12 is LOW), we turn off the onboard LED, send a No motion message to

the serial window, stop the audio playback, and set the pirStatus flag to LOW.

Download ElectricGuardDog/ElectricGuardDog.pde

void loop(){
pirValue = digitalRead(inputPin); // poll the value of the PIR
if (pirValue == HIGH) { // If motion is detected

digitalWrite(ledPin, HIGH); // turn the onboard LED on
if (pirStatus == LOW) { // Trigger motion

Serial.println("Motion detected");

// Generate a random number between 1 and 5 to match file names
// and play back the file and move the servo varying degrees

switch (random(1,6)) {
case 1:

Serial.println("Playing back 1.WAV");
theservo.write(1250);
mediaPlayer.play("1.WAV");
break;

case 2:
Serial.println("Playing back 2.WAV");
theservo.write(1400);
mediaPlayer.play("2.WAV");
break;

case 3:
Serial.println("Playing back 3.WAV");
theservo.write(1600);
mediaPlayer.play("3.WAV");
break;

case 4:
Serial.println("Playing back 4.WAV");
theservo.write(1850);
mediaPlayer.play("4.WAV");

54 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

break;
case 5:

Serial.println("Playing back 5.WAV");
theservo.write(2100);
mediaPlayer.play("5.WAV");
break;

}

delay(1000); // wait a second
theservo.write(1000); // return the servo to the start position
pirStatus = HIGH; // set the pirStatus flag to HIGH to stop

// repeating motion
}

} else {
digitalWrite(ledPin, LOW); // turn the onboard LED off
if (pirStatus == HIGH){

Serial.println("No motion");
mediaPlayer.stop();
pirStatus = LOW; // set the pirStatus flag to LOW to

// prepare it for a motion event
}

}
}

Save the code as ElectricGuardDog.pde and open up the newly created ElectricGuardDog
folder containing the ElectricGuardDog.pde source file. Place the unzipped MediaPlayer
files into the ElectricGuardDog directory. Double-check that the uncompressed

ServoTimer2 library files are in the Arduino libraries directory.

Reopen the Arduino IDE, load up the ElectricGuardDog.pde file, and click the

Verify icon in the Arduino IDE toolbar. If everything compiled without errors,

you have entered the code correctly and placed the dependent library files in

the correct locations. If not, review the error messages to see what dependen-

cies may be missing and correct accordingly.

With the sketch compiled successfully, we’re ready to test and tweak the code.

4.5 Testing It Out

Place the PIR sensor at a convenient location to test motion detection, down-

load the sketch, and open the Arduino IDE’s serial window.

Trigger the PIR sensor by waving your hand in front of it. Your guard dog

should react with a random audio clip and servo motion. If you want the

servo motor to rotate differently, modify theservo.write() method calls with values

ranging from 1000 to 2200. This is because the ServoTimer2 library uses

microseconds instead of the angle of degrees used by the original Servo library

report erratum • discuss

Testing It Out • 55

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

to measure pulse widths. As a result, you may need to experiment to find the

right degree of movement. After getting the hang of the timing based on the

size of the servo you are using, determining the ideal values to elicit the desired

amount of rotation will become second nature.

Now that you have tested and tweaked the servo timing synchronized with

the appropriate audio clip, it’s time to put the finishing touches on the final

placement of the hardware.

4.6 Unleashing the Dog

Consider where the PIR should be mounted. Placing it behind a glass window-

pane to track outdoor movement will not work since the detector cannot

analyze infrared signatures. Ideally, the PIR should be placed in the unob-

structed line of sight of the area being monitored. If it’s just outside your front

door, thread wiring from the PIR mounted above the door to the Arduino/wave

shield mounted in an enclosure inside the house.

Play with the playback audio level. The small speaker that accompanies

Adafruit’s music and sound add-on pack may be adequate for testing, but

it’s hardly loud enough to get the attention of anyone in the next room (let

alone someone who is outdoors). Use the wave shield’s headphone jack and

connect it to a powered speaker, such as a boom box or home stereo. Set the

volume loud enough to get a visitor’s attention.

Attach one end of the wooden rod to the servo wheel using wire, twist ties, or

rubber bands. Cover the other end of the rod with cloth, a cotton ball, or a

rubber cap to protect the surface that the rod’s tip will be bumping against.

You can further embellish the wire frame with a plastic dog snout from a

costume store. Get creative! Just be sure not to attach something so heavy

that the servo cannot generate enough torque to adequately move the attached

wire.

Place the servo assembly next to a window curtain, preferably near the entry-

way. When the PIR is triggered and the barking audio is played back, the faux

appendage will nudge the curtain and give the illusion of a dog’s nose moving

behind the curtain. From the visitor’s point of view, it will look like an agitated

animal is just behind the door, waiting to pounce. It will take some tweaking

to get right, but once your setup is properly configured, the motion-detected

playback events should look and sound very convincing!

56 • Chapter 4. Electric Guard Dog

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

4.7 Next Steps

Here are a couple of other ideas to elevate this project to the next level:

• Replace the dog barking samples with a booming klaxon, a piercing alarm

bell, or science fiction self-destruct sound effects. Swap out the fake dog

snout attached to the servo arm with a laser pen light that sweeps the

entryway. Imagine your front doorway looking like something out of a

science fiction thriller!

• Add an ultrasonic rangefinder and alter the reaction of sound and motion

based on the proximity of the movement being captured. As a intruder

comes closer to the sensor, have the volume get louder and the servo

move more erratically. The closer one gets to the sensor, the more agitated

the Electric Guard Dog becomes.

• Upscale your Guard Dog into a super-sized, weatherized garden scarecrow.

Use more powerful stepper motors connected to a higher voltage external

power source. Make a life-size replica of yourself in old coveralls and use

PVC tubing connected to the stepper motors and wire akin to the strings

of a marionette to control the excited motions of the scarecrow’s arms

and legs.

• Reuse your Electric Guard Dog rig on Halloween. Cover in a “ghost” sheet

or configure a mask with hinged jaws attached to servos that greets visitors

with a spooky voice and ethereal movements.

• Combine the Electric Guard Dog with other projects from the book to turn

on lights, send an email, or lock/unlock the door when motion is detected.

report erratum • discuss

Next Steps • 57

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 5

Tweeting Bird Feeder

Both of my kids are bird lovers. They have had parakeets since they were

toddlers and enjoy watching wild birds nest and feed outside their bedroom

windows. But one of the chores that somehow always slips past us is refilling

the feeders with birdseed. For a variety of reasons, there may be days,

sometimes even weeks, that go by without a refill. Wouldn’t it be so much

easier for the feeder to tell us when it needed to be refilled?

That need was the genesis of inspiration for this project, and what better way

to receive the notification than via a tweet on Twitter. Interested friends and

family members can follow the feeder and know when birds are feeding from

it, when it needs a refill, and when the refill chore has been satisfied. (See

Figure 9, Receive a Twitter notification from your bird feeder, on page 60.)

Since we will already be tracking the refilling patterns via Twitter, let’s make

the feeder broadcasts even more interesting by adding a homemade sensor

on the feeder perch that will record when birds are enjoying a meal and for

how long. Before posting the tweets, we will timestamp and record these

events to a database so we can visualize feeding patterns over time.

Was April a more ravenous month for the birds compared to July? Are early

mornings a busier time of day than late afternoons? What is the average time

birds perch at the feeder? What are the time intervals between perches? How

frequently does the feeder need to be refilled with seed? With the Tweeting

Bird Feeder, you will be able to take on the role of field researcher to discover

these and other feeding behavior questions. It’s time to fly!

5.1 What You Need

Since this will be our first outdoor project, the equipment costs are more

expensive for several reasons. First, unless you are willing to drill holes

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 9—Receive a Twitter notification from your bird feeder ...when birds are perching,

as well as when seed needs replenishing.

through your walls or leave a window or door open to run an Ethernet cable

to the feeder, we will need an untethered way to broadcast sensor events.

Fortunately, a low-power and relatively low-cost option exists in the form of

XBee radios. While these take a little extra effort to configure initially, they

are fairly reliable, easy to communicate with, and don’t require much attention

once operational.

Second, while we could use the standard size Arduino Uno (as shown in the

wiring diagrams throughout this chapter), it might prove to be too long and/or

too wide to conveniently fit into a typical bird feeder. Consequently, I

recommend spending a few extra dollars on an Arduino Nano. The Nano is

better suited to match the feeder’s space constraints. The nice thing about

the Nano is that the pin configurations and the hardware are nearly identical

to that of its bigger brother, and the Nano delivers all that Arduino goodness

in a package within a much smaller footprint.

Third, while it is feasible to power the electronics via a long extension cord

plugged into an outdoor outlet akin to a holiday lighting scenario, such a

60 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 10—Tweeting Bird Feeder parts

configuration is not a self-contained system. Besides, it would be appropriate

to incorporate a greener energy option to be kinder to our environment.

Finally, due to the need to protect the electronics from the elements, we will

need to do a good job weatherizing our assembly. Here’s the shopping list

(refer to the photo in Figure 10, Tweeting Bird Feeder parts, on page 61):

1. An Arduino Uno or an Arduino Nano1

2. Two XBee radios with adapter kits and FTDI connector cable2

3. A photocell

4. A strip of aluminum foil

5. A piece of wire

6. A small solar panel with built-in rechargeable battery and USB connector,

such as those provided by Solio3

1. http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1

2. http://www.adafruit.com

3. http://www.solio.com/chargers/

report erratum • discuss

What You Need • 61

http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1
http://www.adafruit.com
http://www.solio.com/chargers/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

7. One 10k ohm resistor and one 10M ohm resistor—verify that the color

bands on the resistors are brown, black, orange, and gold for the 10k

ohm and brown, black, blue, and gold for the 10M ohm resistors. Refer

to Figure 11, Tweeting Bird Feeder resistors, on page 63. Also shown in

the photo is the photocell (also referred to as a CdS photoresistor).

8. A bird feeder with a large enough seed cavity to house the weatherized

Nano and XBee assembly

9. A computer (not pictured), preferably Linux or Mac-based, with Python

2.6 or higher installed to process incoming messages from the bird feeder

If you opt to use the Arduino Nano in place of the Arduino Uno, you will also

need a standard A to Mini-B USB cable (not pictured) to connect the Arduino

Nano to the computer. Additionally, since the Arduino Nano uses male pins

for wiring connections instead of the female headers found on an Arduino

Uno, you will need female jumper wires (not shown) instead of standard wires.

This will allow you to more easily attach wires to the Nano’s pins without

having to solder the wiring connections in place.

This project is a more complex than the Water Level Notifier, and getting the

XBee radios working reliably is the trickiest part. Still, it’s worth the effort

since you will not only have a cool twenty-first-century high-tech bird feeder,

but you will also be able to reuse the XBee radio setup in several other

projects. Ready to roll up your sleeves? Then let’s get to it!

5.2 Building the Solution

Assembling the hardware to fit snuggly inside the feeder may require some

ingenuity, especially if the bird feeder doesn’t offer much space inside the

seed container. Before we start cramming electronics into the feeder, we first

need to make sure our components work as expected.

1. We will start with the easy part of connecting the aluminum foil capacitive

sensor to the Arduino and writing a function that will send a message to

the serial window (and eventually the serial port of the attached XBee

radio) when the sensor is triggered.

2. Next, we will hook up the photocell to the Arduino and write the code for

it to react to changes in light.

3. Then we will pair the two XBee radios and transmit these events from the

XBee radio attached to the Arduino to the other XBee radio tethered to a

computer via an FTDI USB cable.

62 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 11—Tweeting Bird Feeder resistors

4. And finally, we will write a Python script that will capture the data into

an SQLite database and format and transmit the messages to be posted

on Twitter.

Once everything is working, we will compact the Arduino (preferably the

Nano)+XBee+perch resistor+photocell assembly into a weatherized package,

house it in the feeder, fill the feeder with seed, and go outside for a live field

test.

5.3 The Perch Sensor

Bird feeders come in different shapes and sizes. I opted to go with a low-tech

solution for determining when a bird lands on the feeder perch. While it is

certainly possible to construct an elaborate pressure switch mechanism, the

time and expense required to implement it seems like a lot of work just to

detect when something grips the perch. Instead, we can monitor fluctuations

in electrical capacitance.

Cover the feeder perch with aluminum foil, attach a wire from the foil to a

resistor connected to the digital pins on the Arduino. By measuring baseline

values and fluctuations detected when a bird lands on this sensor, we can

establish a threshold value to determine when a landing message should be

transmitted.

Building the Sensor

Building and testing the perch sensor is the easiest part of this project. Take

a piece of aluminum foil, flatten it to half the size of a gum stick wrapper,

and wrap it across the bird perch. Then take a 10M ohm resistor and insert

report erratum • discuss

The Perch Sensor • 63

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

one end into the Arduino’s digital pin 7 and the other end in digital pin 10.

Then connect a wire from the foil to the resistor lead that is connected to the

Arduino’s digital pin 7. For the wiring diagram, refer to Figure 12, Wiring up

a capacitive sensor, on page 65.

Programming the Sensor

Connect the Arduino to your computer and fire up the Arduino IDE to write

the sensing code. Like the Water Level Notifier project, we will write code that

we will use to do the following:

1. Display the capacitive sensor’s electrical values to the Arduino IDE’s serial

monitor window.

2. Identify the baseline electrical value of the sensor.

3. Alter the flow of current when placing a finger on the sensor.

4. Record the new value to use for our alert trigger condition.

In order to more easily and programmatically detect the electrical changes

that occur when something like a finger or a bird lands on the foil, we will

call upon the help of Arduino enthusiast Paul Badger. Paul wrote an Arduino

library that makes measuring changes in capacitive sensors like the foil one

we constructed for this project a breeze. Called the Capacitive Sensing library,4

the library gives Arduino programmers the ability to turn two or more Arduino

pins into a capacitive sensor that can be used to sense the electrical capaci-

tance of a body. A human body is considerably larger than a bird and will

therefore create a much larger deflected value. Nevertheless, a bird also has

measurable electrical capacitance, and that is the threshold value we will

attempt to refine in our program.

Download this library, uncompress its contents, and copy it into your

Arduino’s libraries folder. For more details, refer to Appendix 1, Installing Arduino

Libraries, on page 211.

Create a new Arduino project and use the # include CapSense.h;.

Due to the difference in size and surface area touching the foil, a bird will

have a very different value than that of a person. If possible, measure the

value difference with a bird. Fortunately my kids have pet parakeets, and

these birds were all too eager to be test subjects in exchange for the seed

supplied by the feeder. My test measurements concluded that the baseline

value varied between 900 and 1400, and the bird’s capacitance increased

that value to more than 1500. Using these values, we can use the same type

4. http://www.arduino.cc/playground/Main/CapSense

64 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://www.arduino.cc/playground/Main/CapSense
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 12—Wiring up a capacitive sensor

of conditional code from the Water Level Notifier project to raise and reset the

bird landing and departure notifications.

We will write the code that will load the CapSense library and capture and

display the capacitive values to the serial monitor window.

Download TweetingBirdFeeder/BirdPerchTest.pde

#include <CapSense.h>

#define ON_PERCH 1500
#define CAP_SENSE 30
#define ONBOARD_LED 13

CapSense foil_sensor = CapSense(10,7); // capacitive sensor
// resistor bridging digital pins 10 and 7,
// wire attached to pin 7 side of resistor

int perch_value = 0;
byte perch_state = 0;

void setup()
{

// for serial window debugging
Serial.begin(9600);

// set pin for onboard led
pinMode(ONBOARD_LED, OUTPUT);

}

report erratum • discuss

The Perch Sensor • 65

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/BirdPerchTest.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

void SendPerchAlert(int perch_value, int perch_state)
{

digitalWrite(ONBOARD_LED, perch_state ? HIGH : LOW);
if (perch_state)

Serial.print("Perch arrival event, perch_value=");
else

Serial.print("Perch departure event, perch_value=");
Serial.println(perch_value);

}

void loop() {
// wait a second each loop iteration
delay(1000);

// poll foil perch value
perch_value = foil_sensor.capSense(CAP_SENSE);

switch (perch_state)
{
case 0: // no bird currently on the perch

if (perch_value >= ON_PERCH)
{

perch_state = 1;
SendPerchAlert(perch_value, perch_state);

}
break;

case 1: // bird currently on the perch
if (perch_value < ON_PERCH)
{

perch_state = 0;
SendPerchAlert(perch_value, perch_state);

}
break;

}
}

Note the defined ON_PERCH value of 1500 to compare against the recorded

perch_value. Due to variations in the conductivity and surface area of your foil

sensor, you may need to tweak the ON_PERCH threshold value just like you did

for the Water Level Notifier project so that it works best for your configuration.

Also note the value of 30 assigned to the CAP_SENSE constant. This is the

number of samples to poll during the capacitive measurement cycle.

Now that we have a working bird perch sensor, we need a way for the feeder

to alert us when it is running low on seed. How will we do this? A photocell

can help.

66 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

5.4 The Seed Sensor

A photocell measures light intensity, with higher intensity correlating with

higher current and lower intensity with lower current. For a more detailed

explanation and tutorial on photocells, visit Ladyada’s ever-helpful website.5

By placing the photocells at a level beneath the seeds poured into the feeder,

we can detect when the seed level dips below the sensor, exposing it to more

light and thereby alerting us that the feeder needs to be refilled.

Before drilling holes into the feeder for placement of the photocell, we need

to write some code and test it using the same approach that we did for our

homemade foil resistor.

Connect one of the photocell leads to the Arduino 5v pin and connect the

other photocell lead to the Arduino analog pin 0. Then bridge a 10k ohm

resistor between the Arduino analog pin 0 and the Arduino ground pin, as

shown in Figure 13, Wiring diagram for the photocell test, on page 68. Does

this electrical pattern look familiar? Yep, it’s the same wiring configuration

used previously with Arduino sensors in this book. This is a frequent pattern

for various types of sensors that connect with the Arduino.

With the photocell connected, connect the Arduino to the computer via the

USB serial cable and launch the Arduino IDE. Using the same technique used

for the foil switch, monitor analog pin 0 values in the Arduino IDE’s serial

monitor window and capture baseline values for when the sensor is bathed

in ambient, standard lighting conditions. Then cover the sensor with your

finger to block incoming light. Note the difference in value.

Just as we did for the capacitive test, we will write the same type of procedures

and conditional statements to test for luminosity thresholds. Indeed, you

could copy and paste code from the foil test and simply change variable names

and connected pin assignments to create the working program.

Download TweetingBirdFeeder/SeedPhotocellTest.pde

#define SEED 500
#define ONBOARD_LED 13
#define PHOTOCELL_SENSOR 0
int seed_value = 0;
byte seed_state = 0;
void setup()
{

// for serial window debugging
Serial.begin(9600);

5. http://www.ladyada.net/learn/sensors/cds.html.

report erratum • discuss

The Seed Sensor • 67

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/SeedPhotocellTest.pde
http://www.ladyada.net/learn/sensors/cds.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 13—Wiring diagram for the photocell test

// set pin for onboard led
pinMode(ONBOARD_LED, OUTPUT);

}

void SendSeedAlert(int seed_value, int seed_state)
{

digitalWrite(ONBOARD_LED, seed_state ? HIGH : LOW);
if (seed_state)

Serial.print("Refill seed, seed_value=");
else

Serial.print("Seed refilled, seed_value=");
Serial.println(seed_value);

}

void loop() {
// wait a second each loop iteration
delay(1000);

// poll photocell value for seeds
seed_value = analogRead(PHOTOCELL_SENSOR);

switch (seed_state)
{
case 0: // bird feeder seed filled

if (seed_value >= SEED)
{

seed_state = 1;
SendSeedAlert(seed_value, seed_state);

}
break;

68 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

case 1: // bird feeder seed empty
if (seed_value < SEED)
{

seed_state = 0;
SendSeedAlert(seed_value, seed_state);

}
break;

}
}

Measuring and assigning the defined SEED threshold value for the photocell

is much easier and more reliable than the capacitive foil test we did earlier.

While you can use your finger to cover up the photocell and measure the

value change, it is more authentic to test with real seed. If you don’t want to

drill holes in your bird feeder to set the photocell just yet, use a paper cup

and place the photocell toward the bottom of the cup.

Similar to the calibration procedure we used in the Water Level Notifier project,

add these lines after the seed_value = analogRead(PHOTOCELL_SENSOR); request in

the sketch’s main program loop:

Serial.print("seed_value=");
Serial.println(seed_value);

Record the seed_value starting value, then fill the cup with seed and measure

the new value. Use these values to set the starting and threshold values for

the photocell.

If you do not see any change, check your wiring and try again. In my tests

with the photocell, the baseline value fluctuated between 450 and 550. It

reported below 100 when my finger covered the sensor. Use whatever upper

and lower limit values you recorded with your tests, keeping in mind that

they will need to be recalibrated once the sensor is mounted inside the feeder.

Now that monitoring is working for both the perch and light sensors, we need

a way to communicate when those sensor thresholds have been exceeded.

It’s not very practical to run an Ethernet cable from an indoor network hub

to an outdoor tree limb. Not to mention that trying to fit a bulky Arduino+Eth-

ernet shield assembly into the confined space of a bird feeder would be a

challenge. We will use the convenience of low-power wireless communication

to transmit these sensor notifications to an indoor computer. Then we will

use that computer’s faster processing and larger storage capacity to analyze

and act upon the data received.

report erratum • discuss

The Seed Sensor • 69

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

5.5 Going Wireless

Although more ubiquitous 802.11b/g Wi-Fi shields exist for the Arduino (such

as Sparkfun’s WiFly Shield), the most prevalent means of Arduino wireless

communication is via XBee radios. The initial outlay for a set of XBee devices

can be a bit pricey. This is because in addition to the XBee radios, you also

need an FTDI USB cable to connect one of the radios to a computer to act as

a wireless serial port.

The other XBee is typically connected to an Arduino. And to make it easier

to make these connections, additional kits are available to mount the XBee

radios to an assembly that better exposes the connection pins while also

displaying data transfers via onboard LEDs. Such visual indicators can be

quite helpful when debugging or troubleshooting a paired XBee connection.

Nevertheless, the fact that XBees offer a low-power and long-range (up to 150

feet) solution coupled with easy connectivity and data transfer protocol make

them an ideal wireless technology for our project needs.

In order to more easily interface with the XBee radios, Adafruit has designed

an adapter kit that “doesn’t suck,” but it does require you to solder a few

small components onto the adapter board. Assemble the adapter following

the instructions posted on Ladyada’s website.6

Once assembled, configuring and pairing the XBee radios isn’t too difficult,

though one of the more helpful utilities used to configure them only runs on

Windows.

Following the instructions for the XBee point-to-point sample program avail-

able on Ladyada’s web page,7 attach the power, ground (Gnd), receive (RX),

and transmit (TX) pins of one of the adapter-mounted XBees to the Arduino’s

5V, Gnd, digital 2, and digital 3 pins. Plug the Arduino into your computer,

upload the test program, open up the Arduino serial window, and make sure

it is set to a rate of 9600 baud. Leave the Arduino plugged in and attach the

other paired XBee to your computer via the FTDI USB cable. Open up a serial

terminal session: Hyperterminal in Windows, the screen on a Mac, or various

serial communication programs such as Minicom for Linux.8

Once you have established a serial connection, type in a few characters in

your serial application’s input screen. If your XBee radios are properly config-

ured, you will see those typed characters appear in the Arduino serial window.

6. http://www.ladyada.net/make/xbee/

7. http://ladyada.net/make/xbee/point2point.html

8. http://alioth.debian.org/projects/minicom/

70 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://www.ladyada.net/make/xbee/
http://ladyada.net/make/xbee/point2point.html
http://alioth.debian.org/projects/minicom/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Using the screen Utility

A helpful serial monitoring utility for *nix-based platforms like Mac OS X and Linux

is the screen application. To use screen in OS X, determine the serial port that the FTDI

USB cable is using by launching the Arduino IDE. Select Serial Port from the Arduino

IDE Tools menu to identify the serial port assigned to it.

In my case, the device name of the FTDI USB-to-XBee adapter connection was

/dev/tty.usbserial-A6003SHc, though yours may be different, depending on other devices

connected to your computer. Open up the Terminal application and type screen
/dev/tty.YOURDEVICE 9600. This will open the serial port and allow you to enter and receive

characters at a communication rate of 9600 baud. To gracefully exit the screen utility,

press Control-A followed by Control-\.

If you connected the XBees to the Arduino and the FTDI cable using XBee

adapters, you should also see the adapter’s green transmit and red receive

LEDs blinking as the characters are wirelessly transmitted from one XBee

radio to the other.

If you do not see the characters being displayed on the receiving window,

review the XBee radio wiring to the appropriate Arduino ports. You can also

swap the radios to verify both are recognized using the FTDI USB connection.

Type an AT in your serial application’s terminal window and verify that it

returns an OK acknowledgment.

If the XBees still don’t seem to be communicating with one another, contact

the retailer you purchased them from for further assistance.

With the XBee radios successfully paired, we will reconnect both the photocell

and foil resistor to the XBee-outfitted Arduino and combine the code that will

receive the sensor’s trigger condition events. For the complete wiring diagram,

refer to Figure 14, Tweeting bird feeder with sensors and XBee radio attached

to Arduino, on page 72.

Consider using a breadboard, or solder the resistors along with the wires

being connected to the Arduino pins. If you opt for a breadboard for testing

purposes, keep in mind that it probably won’t fit in the feeder, so be prepared

to solder the wiring permanently in place after the tests prove successful.

And depending on the orientation of the Arduino Uno or Nano as it is posi-

tioned into the bird feeder, you may need to use straight header pins on the

XBee adapter board instead of the default right-angled pins that accompany

the kit. The goal is to make sure everything fits inside the feeder in a secure

and serviceable way. And recall that unlike the female headers on an Arduino

Uno, the Arduino Nano uses male pins instead. As such, you will need to use

report erratum • discuss

Going Wireless • 71

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 14—Tweeting bird feeder with sensors and XBee radio attached to Arduino

female jumper wires to better accommodate the connections to the Nano’s

male pins.

Finishing the Sketch

We are going to poll both the foil and photocell sensors for activity, first to

the Arduino IDE serial window, then—with one small replacement in our code

—to the XBees. Essentially, we are simply going to combine the threshold

code for the foil and photocell that we tested earlier while sending threshold

alerts to the serial port of the XBee radio. Adding this logic to what we already

wrote to test the perch and seed status, we can complete the sketch for the

project.

Download TweetingBirdFeeder/TweetingBirdFeeder.pde

#include <CapSense.h>;
#include <NewSoftSerial.h>

72 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/TweetingBirdFeeder.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

#define ON_PERCH 1500
#define SEED 500
#define CAP_SENSE 30
#define ONBOARD_LED 13
#define PHOTOCELL_SENSOR 0
// Set the XBee serial transmit/receive digital pins
NewSoftSerial XBeeSerial = NewSoftSerial(2, 3);
CapSense foil_sensor = CapSense(10,7); // capacitive sensor

// resistor bridging digital pins 10 and 7,
// wire attached to pin 7 side of resistor

int perch_value = 0;
byte perch_state = 0;
int seed_value = 0;
byte seed_state = 0;

void setup()
{

// for serial window debugging
Serial.begin(9600);

// for XBee transmission
XBeeSerial.begin(9600);

// set pin for onboard led
pinMode(ONBOARD_LED, OUTPUT);

}

void SendPerchAlert(int perch_value, int perch_state)
{

digitalWrite(ONBOARD_LED, perch_state ? HIGH : LOW);
if (perch_state)
{

XBeeSerial.println("arrived");
Serial.print("Perch arrival event, perch_value=");
}

else
{

XBeeSerial.println("departed");
Serial.print("Perch departure event, perch_value=");

}
Serial.println(perch_value);

}

void SendSeedAlert(int seed_value, int seed_state)
{

digitalWrite(ONBOARD_LED, seed_state ? HIGH : LOW);
if (seed_state)
{

XBeeSerial.println("refill");
Serial.print("Refill seed, seed_value=");

report erratum • discuss

Going Wireless • 73

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

}
else
{

XBeeSerial.println("seedOK");
Serial.print("Seed refilled, seed_value=");

}
Serial.println(seed_value);

}

void loop() {
// wait a second each loop iteration
delay(1000);

// poll foil perch value
perch_value = foil_sensor.capSense(CAP_SENSE);

// poll photocell value for seeds
seed_value = analogRead(PHOTOCELL_SENSOR);

switch (perch_state)
{
case 0: // no bird currently on the perch

if (perch_value >= ON_PERCH)
{

perch_state = 1;
SendPerchAlert(perch_value, perch_state);

}
break;

case 1: // bird currently on the perch
if (perch_value < ON_PERCH)
{

perch_state = 0;
SendPerchAlert(perch_value, perch_state);

}
break;

}

switch (seed_state)
{
case 0: // bird feeder seed filled

if (seed_value >= SEED)
{

seed_state = 1;
SendSeedAlert(seed_value, seed_state);

}
break;

case 1: // bird feeder seed empty
if (seed_value < SEED)

74 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

{
seed_state = 0;
SendSeedAlert(seed_value, seed_state);

}
break;

}
}

Note the references to the capacitive sensing and new software serial libraries

at the beginning of the sketch. We initialize the variables that will use refer-

ences from those libraries along with our threshold variables. Then we set

up the connections to the serial window and XBee radio along with the Arduino

onboard LED on pin 13. Once initialized, the program simply runs a loop and

waits for the perch or seed thresholds to be exceeded or reset. If a change

condition is detected, the running sketch will transmit these trigger messages

to the Arduino IDE’s serial window as well as to the XBee radio.

With both the foil and photocells correctly reporting their values, redirect

serial output from the Arduino IDE serial window to the XBee attached to the

Arduino. Open up the serial application window to the FTDI-connected XBee,

and if all goes well, the data you saw being displayed in the Arduino IDE serial

window should now be showing up in the FTDI-connected serial application

window on your computer. Isn’t wireless communication cool?

At this point, the hardware for our project is connected and tested and may

look similar to the bird feeder components I assembled in Figure 15, A pet

bird can help out with the testing and debugging of threshold values that trigger

perch landing and departure events, on page 76.

But before we start packing the hardware into the bird feeder, we need to

create one more crucial component. Using the Python language, we can write

a short program that will listen for bird landings, poll for seed status, and

post notable changes to Twitter. Let’s go write some code.

5.6 Tweeting with Python

A number of different languages capable of accomplishing the tasks of moni-

toring and interpreting incoming serial console messages and transmitting

outbound messages to the serial port exist. There are also a number of Twitter

libraries for various programming languages.

Python was chosen for this and several other scripts in the book due to the

language’s easy-to-follow syntax, its default inclusion in Linux and Mac OS X

operating systems, and its “batteries included” approach to bundling a

report erratum • discuss

Tweeting with Python • 75

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 15—A pet bird can help out with the testing and debugging of threshold values

that trigger perch landing and departure events.

number of relevant libraries (such as SQLite) in its base distribution. To learn

more about programming in Python, check out Learning Python [LA03].

For this project, the basic functionality we need the tweetingbirdfeeder.py Python

script to accomplish is this:

1. Record the date and time when a bird lands and departs from the perch

in the birdfeeding table in the tweetingbirdfeeder database.

2. Record the date and time when seed levels are depleted and replenished

in the seedstatus table, which is also part of the tweetingbirdfeeder database.

3. Listen for inbound and transmit outbound serial messages via the FTDI

cable-connected XBee radio and respond to events by storing the date

and time of their occurrence and condition.

4. Connect to Twitter via OAuth authentication and post changes in bird

feeding and seed level status.

76 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

The only additional Python libraries that need to be installed for this project

are pyserial and python-twitter.

Beyond relaying tweets to a designated Twitter account, it would be helpful

to visualize trends in the data we will be tweeting, such as the frequency and

date/time of bird landings and the average time between seed refills. We can

then see how these trends map out over an hour, a day, a month, and a year.

To do this, we will need to capture the data in a structured format.

Configure the Database

Since Python 2.5 and higher supports the SQLite database out of the box,

and because our data needs don’t require an overengineered standalone

database server, SQLite is the ideal choice for the job. While we could have

dumped these values to a plain-text comma separated value (CSV) file, orga-

nizing the data into a structured SQLite file affords us two benefits: First, we

will be better prepared for future data analysis queries. Second, we will have

greater flexibility to capture and manage other types of data events later on

simply by adding new columns to the table.

In order to create a database in sqlite3 file format, we can use the sqlite3 com-

mand-line tool. This tool is already installed on Mac OS X. On Linux, it will

most likely need to be retrieved from the distribution’s repository. In the case

of Debian-based distributions like Ubuntu, issuing sudo apt-get install sqlite3
libsqlite3-dev should install the application. Windows users will need to download

the sqlite3.exe utility from the SQLite website.9

Once installed, type sqlite3 within a terminal window. This will display some-

thing like the following:

SQLite version 3.7.6
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite>

Your installation of SQLite may report a different version number.

Next, we will enter the SQL statement to create our new database. To do so,

exit the sqlite command shell by typing .q followed by a carriage return at the

sqlite> prompt. Then relaunch the sqlite3 tool, followed by the name of the

database to be opened.

For this project, we will call the database tweetingbirdfeeder, with the filename

tweetingbirdfeeder.sqlite. Because this database file does not yet exist, SQLite will

9. http://www.sqlite.org/download.html

report erratum • discuss

Tweeting with Python • 77

http://www.sqlite.org/download.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

automatically create the file for us. The database file will be created from the

same directory that you launched the sqlite3 tool from. For example, if you

launched sqlite3 from your home directory, the database file will be created

there.

We will create a new table in the tweetingbirdfeeder.sqlite database that we will

call birdfeeding with the following structure:

Unique?Allow Null?Autoinc?Primary Key?Data TypeColumn Name

YESNOYESYESINTEGERid

NONONONODATETIMEtime

NONONONOTEXTevent

We can create this table by submitting the following SQL statement to the

sqlite command-line tool:

[~]$ sqlite3 tweetingbirdfeeder.sqlite
SQLite version 3.7.6
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE TABLE "birdfeeding" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"time" DATETIME NOT NULL,"event" TEXT NOT NULL);

With the birdfeeding table established, we need another table, one that has a

similar structure in the same database and is called seedstatus:

Unique?Allow Null?Autoinc?Primary Key?Data TypeColumn Name

YESNOYESYESINTEGERid

NONONONODATETIMEtime

NONONONOTEXTevent

Just like the birdfeeding table, submitting the following SQL statement to the

sqlite command-line tool will generate the desired structure for the seedstatus
table:

[~]$ sqlite3 tweetingbirdfeeder.sqlite
SQLite version 3.7.6
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE TABLE "seedstatus" ("id" INTEGER PRIMARY KEY NOT NULL,
"time" DATETIME NOT NULL ,"event" TEXT NOT NULL);

Now that the database has been defined, we can work on the code to import

the database and Serial and Twitter libraries, then listen for serial events

being generated and timestamp and store these events to the appropriate

database table.

78 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

SQLite Manager

While the SQLite command-line tools provide all you need to create and manage

SQLite databases, it’s sometimes easier to work with a graphic user interface. This

is especially applicable if you need to scroll through rows of data in a single window.

Several open source GUI-based SQLite database explorer-style apps exist. If you are

a Mozilla Firefox web browser user, I recommend using the cross-platform SQLite

Manager Firefox plug-in.a

Installing the plug-in is easy. From the Firefox’s Tools→Add-ons menu selection,

search for SQLite Manager and click the Install button. Open SQLite Manager from

Firefox’s Tools→SQLite Manager menu option. Creating a new database is as simple

as clicking on the New Database icon in the SQLite Manager window toolbar. Saving

and opening SQLite database files is just as easy.

a. https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

We’ll conclude the event capture by posting a tweet of the situation. But before

you can programmatically tweet to Twitter, you need to create a Twitter

account and sign up for a Twitter API key and related OAuth credentials. Let’s

go get ourselves an API key.

Twitter API Credentials

Before sending tweets to Twitter, you need a Twitter account to send them

to. And before you send tweets to Twitter programmatically via a language or

library that supports OAuth,11 you need to create an application identifier for

the intended Twitter account. While you could use an existing Twitter account,

I prefer creating new accounts whenever a new project demands it. That way,

followers of my existing account are not accosted by tweets of my latest exper-

iments. It also offers a way to share your application’s tweets selectively. With

these considerations in mind, create a new account and application ID

specifically for the bird feeder project.

Using your new Twitter account credentials, visit dev.twitter.com and select

the “Register an app” option. On the New Twitter Application page, enter a

unique name for your application, a description at least ten characters long,

and a valid website for the app. Enter a temporary one if you don’t have a

permanent website from which you will offer your application for download.

Then select Client under Application Type and select Read & Write under

Default Access type. You can upload a custom icon if you like, but it’s not

required. Then enter the CAPTCHA validation and click the Register Applica-

11. http://oauth.net/

report erratum • discuss

Tweeting with Python • 79

https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://dev.twitter.com
http://oauth.net/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

tion button at the bottom of the screen. Read and accept the Twitter API

Terms of Service to proceed.

Once your request has been approved, a unique API Key, OAuth Consumer

key, and Consumer secret will be generated. Click the My Access Token menu

item on the right side of the page to access your application’s all important

Access Token (oauth_token) and super-secret Access Token Secret (oauth_

token_secret). Copy these unique codes and store them in a safe, secure file.

You will need these values to programmatically interact with your new Twitter

account. Remember to keep these values a secret! You don’t want any

unscrupulous individuals getting hold of your secret token and using it to

spam your friends and raise the ire of the Twitter community.

With a Twitter account and a valid application API key in hand, you can use

these credentials in our Python-based Tweeting Bird Feeder application.

The Python-Twitter Library

Even though we have API access to Twitter, we still need to talk to Twitter

from Python. We can do so with help a little help from the Python-Twitter

library.12 To install both the Pyserial and Python-Twitter libraries, download

the latest version and execute the standard sudo python setup.py install command.

If you’re installing this library on Mac OS X 10.6 (Snow Leopard) or higher,

the easy_install Python setup tool is preinstalled. However, due to quirks in the

64-bit libraries, you will need to precede the command with an i386 architec-

ture flag to install the Python-Twitter library without errors. The complete

command for this is sudo env ARCHFLAGS="-arch i386" easy_install python-twitter.

At last, we have all the accounts configured and dependencies installed, and

we can complete the project by writing the Python script that will listen for

messages on the receiving XBee radio serial port, timestamp the messages,

save them in a database, and post the message to Twitter. Let’s write the

Python script that will codify this process.

Download TweetingBirdFeeder/tweetingbirdfeeder.py

import DateTime, Serial port, SQLite3 and Twitter python libraries
from datetime import datetime
import serial
import sqlite3
import twitter

import the os module to clear the terminal window at start of the program
windows uses "cls" while Linux and OS X use the "clear" command
import os

12. http://code.google.com/p/python-twitter/

80 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/tweetingbirdfeeder.py
http://code.google.com/p/python-twitter/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

if sys.platform == "win32":
os.system("cls")

else:
os.system("clear")

Connect to the serial port, replacing YOUR_SERIAL_DEVICE with the
name of the serial port of the FTDI cable-attached XBee adapter
XBeePort = serial.Serial('/dev/tty.YOUR_SERIAL_DEVICE', \

baudrate = 9600, timeout = 1)

Connect to SQLite database file
sqlconnection = sqlite3.connect("tweetingbirdfeeder.sqlite3")

create database cursor
sqlcursor = sqlconnection.cursor()

Initialize Twitter API object
api = twitter.Api('Your_OAuth_Consumer_Key', 'Your_OAuth_Consumer_Secret', \

'Your_OAuth_Access_Token', 'Your_OAuth_Access_Token_Secret')

def transmit(msg):
Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

Determine message and assign response parameters
if msg == "arrived":

tweet = "A bird has landed on the perch!"
table = "birdfeeding"

if msg == "departed":
tweet = "A bird has left the perch!"
table = "birdfeeding"

if msg == "refill":
tweet = "The feeder is empty."
table = "seedstatus"

if msg == "seedOK":
tweet = "The feeder has been refilled with seed."
table = "seedstatus"

print "%s - %s" % (timestamp.strftime("%Y-%m-%d %H:%M:%S"), tweet)

Store the event in the SQLite database file
try:

sqlstatement = "INSERT INTO %s (id, time, event) \
VALUES(NULL, \"%s\", \"%s\")" % (table, timestamp, msg)
sqlcursor.execute(sqlstatement)
sqlconnection.commit()

except:
print "Could not store event to the database."
pass

report erratum • discuss

Tweeting with Python • 81

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Post message to Twitter
try:

status = api.PostUpdate(msg)
except:

print "Could not post Tweet to Twitter"
pass

Main program loop
try:

while 1:
listen for inbound characters from the feeder-mounted XBee radio
message = XBeePort.readline()

Depending on the type of message is received,
log and tweet it accordingly
if "arrived" in message:

transmit("arrived")

if "departed" in message:
transmit("departed")

if "refill" in message:
transmit("refill")

if "seedOK" in message:
transmit("seedOK")

except KeyboardInterrupt:
Exit the program when the Control-C keyboard interrupt been detected
print("\nQuitting the Tweeting Bird Feeder Listener Program.\n")
sqlcursor.close()
pass

Once the necessary datetime, serial, sqlite, and twitter libraries are loaded, we clear

the terminal window (sending a cls for Windows and a clear for any other oper-

ating system), connect to the receiving XBee radio serial port (the XBee that

is attached to the computer via the FTDI cable). Then we connect to the

tweetingbirdfeeder.sqlite3 database file we created earlier and run an infinite while
loop until the Control-C keyboard combination is triggered so we can gracefully

exit the program. If the attached XBee radio receives a message it recognizes,

we call the def transmit(msg) function that parses the msg variable, adds descrip-

tive text to the event, saves the message to the database, and posts it to

Twitter.

With the Arduino running and the XBee radios paired and powered, test the

threshold detections by touching the perch sensor and photocell enough times

to trigger several event transmissions. Assuming no errors were reported in

the terminal window of the running script, open the tweetingbirdfeeder.sqlite3 file

82 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

in the SQLite Manager’s Browse and Search window and verify that entries

for both sensors were timestamped when the related events were triggered.

If everything checks out, log into the Twitter account that you used to post

the events and verify that the events appear on the timeline.

We’re almost done. Just a few more hardware assembly steps remain.

5.7 Putting It All Together

In order to make the project fully functional, we need to package up the

Arduino+XBee hardware assembly inside a weatherized, protected layer

within the bird feeder, mount the photocell near the base of the feeder, fill

the feeder with seed, attach the Arduino+XBee hardware to a power source,

and place the feeder outdoors but within range of the paired XBee radio

attached to the computer.

Unless you live in an area with little rainfall, you will need to protect the

electrical assembly from water damage. I have found double bagging the

components in a small plastic freezer bag does a sufficient job of weatherproof-

ing the Arduino+XBee. However, unless you plan on powering the electronics

with a 9V battery that can be contained within the bundle (it might be good

for short data collection sessions but won’t last very long before its charge is

exhausted), you will need to account for an external cord to attach to the

Arduino so that continuous power can be delivered.

Cutting a small opening in the bag to allow the cable to enter works, but doing

so exposes the insides to potential moisture condensation. To minimize this

risk, tightly wrap the freezer bag and cable exit point with a continuous sheet

of plastic wrap, climbing high enough up the power cord to ensure a good

seal that won’t slip or loosen with weather changes.

Using a weatherized power cord (such as those sold for outdoor decorative

lighting purposes) may be less expensive and easier to test in the short term.

However, environmentally conscious individuals may prefer instead to spend

a bit more money up front for a longer, more sustainable energy alternative

in the form of a photovoltaic power supply.

When searching for an adequate, portable solar power solution, make sure

it can deliver 5 volts, is built for rugged durability, and has a built-in

rechargeable battery when backup power is needed. Products like the Solio

Bolt provide a relatively inexpensive solution for short-term measurements.13

13. http://www.solio.com/chargers/

report erratum • discuss

Putting It All Together • 83

http://www.solio.com/chargers/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

If you prefer photovoltaic solutions that offer greater internal battery charging

capacities and voltage, be prepared to spend a bit more for the added capabil-

ities. Companies like Sunforce Products offer a variety of solar backup power

maintainers, trickle chargers, and controllers designed to take on greater

loads.14

You should mount the solar panel far enough away from the feeder to gain

maximum sun exposure. If possible, mount the panel at a ninety-degree angle

to the sun for optimal energy capture. Depending on your location and average

level of daylight intensity, you may need to seek alternatives such as con-

sumer-grade wind turbine chargers or even pedal-powered dynamos.

We have accomplished quite a number of new objectives this project, from

using photocell and homemade sensors and learning how to pair and wire-

lessly communicate between XBee-attached hardware to writing a script that

records structured data, responds to events, and submits posts to Twitter

via Twitter’s API. We have also taken into account standalone Arduino+XBee

radio energy requirements and ways to adequately shield our electronics from

environmental changes.

We will reuse these valuable lessons with some of the other projects in the

ensuing chapters.

5.8 Next Steps

The variety of home automation projects using capacitive and photocell sensor

notifications is expansive. Here are just a few ideas to consider pursuing:

• Place an XBee+photocell-equipped Arduino, powered by a rechargeable

battery pack, in your refrigerator or freezer to detect how often and how

long the doors are left open. Use this data to calculate energy expended

each month as a result of these encounters. If such expenditures are

excessive, broadcast emails and/or tweets to cohabitants reminding them

of their growing carbon footprint.

• If groping for a light switch is a frustratingly frequent chore, tweak the

capacitive sensor configuration to be used to turn on basement or garage

lights by touching foil tacked to a wall or to a table-mounted surface.

• Use the variable analog readings of a photocell to measure day-night cycles

and sunny-overcast recordings and map these to seasonal gardening data.

Did planting certain species of flowers, fruits, or vegetables before a certain

14. http://www.sunforceproducts.com/results.php?CAT_ID=1

84 • Chapter 5. Tweeting Bird Feeder

report erratum • discuss

http://www.sunforceproducts.com/results.php?CAT_ID=1
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

time help or hinder their growth? How many days were the plants bathed

in full sunlight compared to overcast or inclement skies?

In addition to these suggestions, there is still plenty of data analysis that can

be done with the collected bird feeder data. Use a Python graphing library

like CairoPlot to help visualize the average duration of and time in between

bird visits.15 How quickly was seed consumed? How much of an effect did

weather have on feeding times and durations? Does changing the type of seed

alter the duration and frequency of visits?

Consider sharing your tweets with other bird enthusiasts online to expand a

social network of others collecting and sharing their bird feeder data. Collec-

tively compare patterns across various regions and geographies to infer

population trends, environmental impacts, migration cycles, and other factors

to better understand the habits of our feathered friends.

15. http://cairoplot.sourceforge.net/

report erratum • discuss

Next Steps • 85

http://cairoplot.sourceforge.net/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 6

Package Delivery Detector

There is nothing like that surge of anticipation when coming home after a

long day to discover a package delivery resting outside the front door. Even

if it was a package you were expecting and tracked online with every departure

hub, seeing that parcel safely awaiting your arrival can sometimes feel like

receiving a birthday gift.

Wouldn’t it be even more comforting to know the very moment when your

package arrived versus waiting up to hours later for an email from the

courier confirming the delivery? (See Figure 16, Receive an email from your

home whenever a package arrives, on page 88) What if the driver accidentally

delivered the package to the wrong location? Say goodbye to those worries.

The Package Delivery Detector will send you an email when a package is left

at your doorstep. You can further filter the notification by delaying the message

until the shipper confirms delivery via its web services.

This project combines the components we used in Chapter 5, Tweeting Bird

Feeder, on page 59, with a similar alert monitoring mechanism used in

Chapter 4, Electric Guard Dog, on page 45. Instead of using a PIR, the Package

Delivery Detector will sense deliveries with a force sensitive resistor. When a

box approximating the weight of a small package (or about half a kilogram)

is dropped on top of a delivery pad containing a force sensitive resistor, the

sensor sends a notification via an XBee-connected serial port. In turn, this

notification processes a Python script that logs the delivery and sends an

email notification. Optionally, the delivery notification can wait an hour and

confirm delivery with the courier’s website before transmitting the verified

message.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 16—Receive an email from your home whenever a package arrives.

6.1 What You Need

Most of what you need to build this project has been used by other projects

in the book, with the exception of a force sensitive resistor (sometimes erro-

neously referred to as a pressure sensor). Take a look at the complete list of

the project’s components (refer to the photo in Figure 17, Package Delivery

Detector parts, on page 89):

1. An Arduino Diecimila, Nano, or Uno

2. Paired XBee radios and accompanying FTDI cable

3. One 10k ohm resistor

4. A force sensitive resistor,1 as shown in the photo in Figure 18, Package

Delivery Detector resistors, on page 90, along with a 10k ohm resistor2

1. http://www.adafruit.com/products/166

2. Sparkfun offers a square resistor that provides even greater surface

area:http://www.sparkfun.com/products/9376.

88 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://www.adafruit.com/products/166
http://www.sparkfun.com/products/9376
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 17—Package Delivery Detector parts

5. A 9-volt power supply to power the Arduino once untethered from the

USB development cable

6. Two wood or plastic square tiles, preferably connected together via a wedge

on one side

7. A computer (not pictured), preferably Linux or Mac-based, with Python

2.6 or higher installed to process incoming messages and interrogate

popular logistics firms’ web services

Depending on the type of Arduino that you opt to use for this project, you

will also need a standard A to B or A to Mini-B USB cable to connect the

Arduino to the computer.

If you have built the other projects in this book up to this point, the Package

Delivery Detector is going to be a relatively easy project to construct. This is

because it’s essentially a variation of the Tweeting Bird Feeder. Instead of a

light sensor, this project will use a strategically placed force sensitive resistor.

And we will enhance the bird feeder Python script to poll a popular courier

delivery service. Doing so will help certify the authenticity of the delivery. Let’s

get started!

report erratum • discuss

What You Need • 89

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 18—Package Delivery Detector resistors

6.2 Building the Solution

The hardware construction for this project closely matches the sensor

approach we built for the Tweeting Bird Feeder project. We will once again

call upon the Python language to script the server-centric interactions, but

this script will also utilize several custom packages to interrogate popular

web services offered by US-based courier companies like Federal Express

(FedEx) and United Parcel Service (UPS). More specifically, we will:

1. Attach the force sensitive resistor to an available analog pin on the Arduino

and identify a threshold value when weight is applied to the resistor.

2. Attach the XBee radio to the Arduino and transmit a message to another

XBee radio attached to a computer when the threshold value of the force

sensitive resistor has been exceeded.

3. When a threshold event has been received, pause execution for ten minutes

to give the courier’s tracking systems an opportunity to update its records.

Then iterate through a database table of known FedEx and UPS in-transit

package tracking numbers. Query these numbers with FedEx and UPS

web services to determine a delivery confirmation match.

4. If a match is identified, update the tracking number database table with

a delivery confirmation and date/time stamp.

5. Send an email via Google’s Gmail SMTP mail gateway indicating the time

of the threshold event and any packages that match the delivered status

query. If no tracking number is matched, indicate such in the body of the

email.

Now let’s begin by first assembling the package sensor hardware components,

followed by the software to drive it.

90 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 19—The Package Delivery Detector wiring diagram

6.3 Hardware Assembly

If you already constructed the Tweeting Bird Feeder project, you know how

to connect the XBee and a sensor to the Arduino. If you need a refresher, refer

to Section 5.5, Going Wireless, on page 70. Instead of attaching the light

sensor with the inline 10k ohm resistor to the Arduino’s analog pin, we are

going to swap out the light sensor with a force sensitive resistor. See Figure

19, The Package Delivery Detector wiring diagram, on page 91. Wire one of

the force sensitive resistor’s leads to the 3.3v power source. Connect the

other to analog pin 0. Then bridge the analog 0 wire to ground with a 10k

ohm resistor.

The XBee radio attaches in the same way it did in the Tweeting Bird Feeder

project. Namely, connect the XBee’s power lead to the Arduino’s 5.5v output

pin. Wire the XBee’s ground lead to the other available ground pin on the

Arduino. Then connect the XBee’s receive lead to the Arduino’s digital pin 2

and the XBee’s transmit lead to the Arduino’s digital pin 3. Once everything

is connected, it should look something like Figure 20, A Package Delivery

Detector, on page 92. Attach the USB cable from the computer to the Arduino’s

USB port to power up the Arduino so we can write, run, and debug the

package sensor sketch.

report erratum • discuss

Hardware Assembly • 91

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 20—A Package Delivery Detector

6.4 Writing the Code

There are two code components in this project. The first is the sketch that

monitors when something has been placed on the force sensitive resistor that

is heavy enough to exceed the normal threshold. When that occurs, broadcast

the event along with the value of the force resistor resistor via the XBee soft

serial port.

The second component is a Python script that waits for a threshold event

from the force sensitive resistor monitor. If the threshold has been exceeded,

record the value of the resistor along with the date and time of the event to

an SQLite database. If the database contains a list of known tracking numbers,

iterate through these numbers and interrogate FedEx and UPS web services

for a match. Then send an email containing information about the delivery

event as well as the courier’s package delivery confirmation, if available.

6.5 The Package Delivery Sketch

The code for this sketch is a variation of the code we wrote for the Tweeting

Bird Feeder. One of the neat things about Arduino-centric projects is once

you have written a sketch for a sensor or an actuator, the logic and syntax

for the sketch can frequently be reused. After all, the basic principles of sen-

sors and actuators are essentially the same—only the type of sensor or motor

hardware and values have changed.

92 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Since we already discussed the majority of the code in this sketch from the

Tweeting Bird Feeder chapter, we’re not going to spend a lot of time reviewing

it. But the one variable worth mentioning is force_value. Like the other sensors

we used in the other projects, you will need to calibrate the force sensitive

resistor for your configuration due to the variety of force sensitive resistors

available, the type of wiring and voltages used, and the way the sensor is

wedged in place.

Download PackageDeliveryDetector/PackageDeliveryDetector.pde

#include <NewSoftSerial.h>

#define FORCE_THRESHOLD 400
#define ONBOARD_LED 13
#define FORCE_SENSOR 0

// Set the XBee serial transmit/receive digital pins
NewSoftSerial XBeeSerial = NewSoftSerial(2, 3);
int force_value = 0;
byte force_state = 0;

void setup()
{

// for serial window debugging
Serial.begin(9600);

// for XBee transmission
XBeeSerial.begin(9600);

// set pin for onboard led
pinMode(ONBOARD_LED, OUTPUT);

}
void SendDeliveryAlert(int force_value, int force_state)
{

digitalWrite(ONBOARD_LED, force_state ? HIGH : LOW);
if (force_state)

Serial.print("Package delivered, force_value=");
else

Serial.print("Package removed, force_value=");
Serial.println(force_value);
XBeeSerial.println(force_value);

}
void loop()
{

// wait a second each loop iteration
delay(1000);

// poll FLEX_SENSOR voltage
force_value = analogRead(FORCE_SENSOR);

report erratum • discuss

The Package Delivery Sketch • 93

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/PackageDeliveryDetector.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

switch (force_state)
{
case 0: // check if package was delivered

if (force_value >= FORCE_THRESHOLD)
{

force_state = 1;
SendDeliveryAlert(force_value, force_state);

}
break;

case 1: // check if package was removed
if (force_value < FORCE_THRESHOLD)
{

force_state = 0;
SendDeliveryAlert(force_value, force_state);

}
break;

}
}

Even though the basic sketch is written, we still need to test the sketch on

the Arduino and verify that the force sensitive resistor reacts appropriately

to weight change events. We also need to ensure that the XBee radios are

paired with each other and are passing the force values and weight messages

being detected on the Arduino’s analog pin 0.

6.6 Testing the Delivery Sketch

Install and run the sketch on the Arduino, open the Arduino IDE serial win-

dow, and pinch the force sensitive resistor between your thumb and forefinger.

A delivery detection should register on the serial window. Release the force

sensitive resistor and wait a few seconds. The serial window should report a

value less than 400, followed by an Empty alert. If you don’t see these messages,

check your sensor wiring. You may also need to increase or decrease the

force_sensor_value threshold value condition to address any jitter or unexpected

fluctuations in the analog readings of the sensor.

Next, make sure that the XBee radios are connected and communicating with

each other. Use the screen command that was mentioned in Chapter 5,

Tweeting Bird Feeder, on page 59, to observe the inbound messages from the

force sensitive resistor when it is squeezed. The information being transmitted

should be the same as what is being displayed in the Arduino IDE serial

window. Once everything checks out, we can write a Python script that will

listen for inbound XBee messages via the FTDI cable created–serial port and

act on them accordingly.

94 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

6.7 The Delivery Processor

Once again, we’re going to borrow from the code we wrote in Chapter 5,

Tweeting Bird Feeder, on page 59. We’re going to copy the serial monitoring

and SQLite database connectivity instructions and enhance the script with

additional functionality. First, we’re going to add the ability to scan a database

containing known tracking numbers of packages in transit. When a delivery

notification is received via the XBee/FTDI serial port connection, we will wait

several minutes before iterating over the tracking numbers to determine which

package was delivered. This delay can sometimes take an hour or more with

some couriers. In the case of the US Post Office, it can take up to a day,

making lookups on USPS deliveries impractical for our more immediate needs.

After scanning and polling the tracking numbers with the appropriate courier’s

web services, we will add any courier delivery validation information to our

delivery notification email message. If an error occurs with the tracking

number lookup or if there were no confirmed deliveries of the tracking numbers

we iterated upon, we will say that in the body of the message as well.

Finally, we will use Gmail to send our message to the intended recipient. If

you don’t have a Gmail account, you will need to create one for this project.

Alternatively, if you have SMTP outbound mail access via a different server,

you’re welcome to substitute Gmail’s SMTP gateway with your own. Before

we can write any Python code, though, we will need to create our database

structures to store delivery events, tracking numbers, package descriptions,

and confirmations.

6.8 Creating the Delivery Database

We need to create two tables for this project. The first will store both the his-

tory of force sensitive resistor triggers that occur when packages are delivered

and removed as well as the value of the exceeded threshold value. The second

table will store known tracking numbers of inbound package deliveries and

a date delivery field that will contain the time and date of when the delivery

was confirmed by the courier. We’ve done something like this before in

Chapter 5, Tweeting Bird Feeder, on page 59, so we’ll apply that same

approach to the creation of the package delivery database.

We will first create the database file using the sqlite3 tool, followed by the cre-

ation of the two tables within the packagedelivery database. Recall that we need

to capture the force sensitive resistor’s trigger actions and record the time

report erratum • discuss

The Delivery Processor • 95

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

and date of when those actions take place. Here’s the structure of the

database:

Unique?Allow Null?Autoinc?Primary Key?Data TypeColumn Name

YESNOYESYESINTEGERid

NONONONODATETIMEtime

NONONONOTEXTevent

Does this look familiar? Yes, it’s very similar to the structure of the table we

created for the Tweeting Bird Feeder project. The general principles are the

same: namely, we need to capture an event and record when it occurred in

a structured format. This time the event is when a package arrives.

Create this table by submitting the following SQL statement to the sqlite

command line:

[~]$ sqlite3 packagedelivery.sqlite
SQLite version 3.7.6
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE TABLE "deliverystatus" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"time" DATETIME NOT NULL,"event" TEXT NOT NULL);

We still need a table called tracking to hold assigned tracking numbers, a

description of the package contents, and the package’s delivery status and

the date of delivery as confirmed by the courier’s own records. The structure

of this table should be as follows:

Unique?Allow Null?Autoinc?Primary Key?Data TypeColumn Name

YESNOYESYESINTEGERid

NONONONOTEXTtracking_number

NONONONOTEXTdescription

NONONONOBOOLEANdelivery_status

NONONONODATETIMEdelivery_date

Run the following SQL statement in the sqlite3 command-line tool to create

this second table structure in the packagedelivery database:

[~]$ sqlite3 packagedelivery.sqlite
SQLite version 3.7.6
Enter ".help" for instructions
Enter SQL statements terminated with a ";"
sqlite> CREATE TABLE "tracking" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"tracking_number" TEXT NOT NULL, "description" TEXT NOT NULL,
"delivery_status" BOOL NOT NULL, "delivery_date" DATETIME);

96 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Now that our database tables have been created, we can proceed with the

next step of obtaining the Python package dependencies we will use in the

delivery processor script.

6.9 Installing the Package Dependencies

To make it easier to track packages being handled by FedEx or UPS, we are

going to use a Python package called packagetrack. This wrapper helps parse

the XML-formatted tracking data provided by the courier’s web services,

making it much easier to handle the data. While it would have been possible

to use a Python screen-scraping library like Beautiful Soup, such solutions

can be brittle. Not to mention, couriers the size of FedEx and UPS offer com-

prehensive APIs to their web services partially to discourage screen scrapers

from data harvesting their sites. As such, before installing the packagetrack
library, you will need to use an existing UPS and FedEx customer account to

sign up for each company’s service APIs. If you do not already have a customer

account number and login, you will need to visit each company’s website and

create a new account. The account creation process requires a valid credit

card number (used to bill for parcel shipping charges).

With a valid username, password, and account number in hand, visit each

company’s respective developer portals to sign up for a production web service

API key (for FedEx) or license number (for UPS). FedEx will also generate

additional security credentials (key password and meter number) when you

request the production key. You will need these values to call the respective

courier’s web service APIs.

Next, we will install the latest packagetrack package. However, instead of retriev-

ing it via the simple easy_install Python package retrieval and installation utility,

I suggest using git to clone a fork of packagetrack maintained by Michael Stella.3

In addition to Michael’s packagetrack, download his fork of its dependency,

python-fedex, which fixes a parsing issue with the FedEx XML payload.4 The

python-fedex package also relies on one more Python library dependency, called

the suds library. This is a Simple Object Access Protocol (SOAP) library imple-

mentation for Python that python-fedex uses to parse the SOAP XML-wrapped

payload received by the FedEx web service. Use the sudo easy_install suds Python

command to automatically download and install the suds package.

3. https://github.com/alertedsnake/packagetrack

4. https://github.com/alertedsnake/python-fedex

report erratum • discuss

Installing the Package Dependencies • 97

https://github.com/alertedsnake/packagetrack
https://github.com/alertedsnake/python-fedex
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Next, install both the python-fedex and packagetrack packages via the sudo python
setup.py install command in the terminal window. Ensure that the packages

were successfully installed by launching the Python interpreter and typing

python in the terminal window. At the >>> prompt, type import packagetrack and

hit return. If no error messages appeared, you installed the packages correctly.

All the other packages we will call upon in the delivery detector script are

included with the standard Python 2.5 or higher distribution. With the

packagetrack dependencies and courier’s web service API key requirements

satisfied, we are ready to write the delivery monitoring script.

6.10 Writing the Script

The package delivery monitoring script needs to perform several functions,

from listening for and reacting to triggers from the package delivery monitoring

hardware to sending an email alert about the event and everything in between.

Specifically, the script needs to do the following:

1. Listen for threshold exceeded events (i.e., package delivery and removal)

sent via the soft serial port communications between the XBee radios.

2. Timestamp these events generated by the force sensitive resistor in the

deliverystatus table.

3. If a high value is received (i.e., a package is delivered), query tracking

numbers stored in the tracking table. If a low value is received (i.e., a

package is removed), send an email alert stating such and return execution

of the script back to listening for delivery events.

4. If a high value is received, wait for a specified time before querying the

tracking table to allow time for the courier to update the delivery records.

5. Iterate over undelivered tracking numbers and poll the appropriate

courier’s web service records for delivery confirmation status.

6. If the courier’s web service results report a delivery confirmation, change

the status of the tracking number record in the local tracking database table

to 1 (i.e., boolean value for delivered).

7. Send an email via Gmail’s secure SMTP gateway that contains the results

of delivery activity in the body of the message. Note that you will need login

access to an active Gmail account for this function to work.

8. Return to listening for additional package delivery events.

With those steps in mind, here’s the complete script.

98 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Download PackageDeliveryDetector/packagedeliverydetector.py

① from datetime import datetime
import packagetrack
from packagetrack import Package
import serial
import smtplib
import sqlite3
import time
import os
import sys
Connect to the serial port
XBeePort = serial.Serial('/dev/tty.YOUR_SERIAL_DEVICE', \

baudrate = 9600, timeout = 1)②

③ def send_email(subject, message):
recipient = 'YOUR_EMAIL_RECIPIENT@DOMAIN.COM'
gmail_sender = 'YOUR_GMAIL_ACCOUNT_NAME@gmail.com'
gmail_password = 'YOUR_GMAIL_ACCOUNT_PASSWORD'

Establish secure TLS connection to Gmail SMTP gateway
gmail_smtp = smtplib.SMTP('smtp.gmail.com',587)
gmail_smtp.ehlo()
gmail_smtp.starttls()
gmail_smtp.ehlo

Log into Gmail
gmail_smtp.login(gmail_sender, gmail_password)

Format message
mail_header = 'To:' + recipient + '\n' + 'From: ' + gmail_sender + '\n' \

+ 'Subject: ' + subject + '\n'
message_body = message
mail_message = mail_header + '\n ' + message_body + ' \n\n'

Send formatted message
gmail_smtp.sendmail(gmail_sender, recipient, mail_message)
print("Message sent")

Close connection
gmail_smtp.close()

④ def process_message(msg):
try:

Remember to use the full correct path to the
packagedelivery.sqlite file
connection = sqlite3.connect("packagedelivery.sqlite")
cursor = connection.cursor()

Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

report erratum • discuss

Writing the Script • 99

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/packagedeliverydetector.py
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

sqlstatement = "INSERT INTO delivery (id, time, event) \
VALUES(NULL, \"%s\", \"%s\")" % (timestamp, msg)
cursor.execute(sqlstatement)
connection.commit()
cursor.close()

except:
print("Problem accessing delivery table in the " \
+ "packagedelivery database")

if (msg == "Delivery"):

Wait 5 minutes (300 seconds) before polling the various couriers
time.sleep(300)

try:
connection = sqlite3.connect("packagedelivery.sqlite")
cursor = connection.cursor()
cursor.execute('SELECT * FROM tracking WHERE '\
+ 'delivery_status=0')
results = cursor.fetchall()
message = ""

for x in results:
tracking_number = str(x[1])
description = str(x[2])
print tracking_number

package = Package(tracking_number)
info = package.track()
delivery_status = info.status
delivery_date = str(info.delivery_date)

if (delivery_status.lower() == 'delivered'):
sql_statement = 'UPDATE tracking SET \
delivery_status = "1", delivery_date = \
"' + delivery_date + \
'" WHERE tracking_number = "' \
+ tracking_number + '";'

cursor.execute(sql_statement)
connection.commit()
message = message + description \
+ ' item with tracking number ' \
+ tracking_number \
+ ' was delivered on ' \
+ delivery_date +'\n\n'

Close the cursor
cursor.close()

100 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

If delivery confirmation has been made, send an email
if (len(message) > 0):
print message
send_email('Package Delivery Confirmation', message)

else:
send_email('Package Delivery Detected', 'A ' \
+ 'package delivery event was detected, ' \
+ 'but no packages with un-confirmed ' \
+ 'delivery tracking numbers in the database ' \
+ 'were able to be confirmed delivered by ' \
+ 'the courier at this time.')

except:
print("Problem accessing tracking table in the " \
+ "packagedelivery database")

else:
send_email('Package(s) Removed', 'Package removal detected.')

⑤ if sys.platform == "win32":
os.system("cls")

else:
os.system("clear")

print("Package Delivery Detector running...\n")
try:

while 1:
listen for inbound characters from the XBee radio
XBee_message = XBeePort.readline()

Depending on the type of delivery message received,
log and lookup accordingly
if "Delivery" in XBee_message:

Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print("Delivery event detected - " + timestamp)
process_message("Delivery")

if "Empty" in XBee_message:
Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print("Parcel removal event detected - " + timestamp)
process_message("Empty")

⑥ except KeyboardInterrupt:
print("\nQuitting the Package Delivery Detector.\n")
pass

① Begin by importing the script’s dependencies on the custom packagetrack
library along with the serial, smtplib, sqlite3, time, os, and sys standard Python

libraries.

report erratum • discuss

Writing the Script • 101

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

② Identify the serial port of the XBee radio attached to the computer’s serial

port. This radio will listen for incoming transmissions from the paired

XBee radio attached to the Arduino connected to the force sensitive resis-

tor. Replace the '/dev/tty.YOUR_SERIAL_DEVICE' placeholder with the actual path

of the your XBee radio’s attached serial port value.

③ This is the send_mail routine that is used in the process_message routine, and

thus it needs to be declared first. Replace the recipient, gmail_sender, and

gmail_password placeholder values with your desired recipient and Gmail

account credentials.

④ The process_message routine is where most of the action happens in the

script. Connect to the packagedelivery.sqlite SQLite database and log the type

of event received. If a delivery message is received, the script waits for five

minutes before polling the FedEx and UPS web services to give the shipper

enough time to log the delivery status to the central servers. Then, the

tracking table in the packagedelivery.sqlite database is queried for any undeliv-

ered tracking numbers. These numbers are submitted one at a time to

the respective web service. If a delivery confirmation is returned, its posi-

tive response is logged to the database with the confirmed delivery date,

as well as appended to the body of the email message to be sent via the

send_email routine.

⑤ This is the main loop of the script. Begin by clearing the screen and lis-

tening for a “Delivery” or “Empty” message from the Arduino-attached

XBee radio and invoke the process_message routine.

⑥ Gracefully exit the script if a Ctrl-C keypress is detected.

Save the script as packagedelivery.py and execute it with the python packagedelivery.py
command. If any errors arise, check syntax and code-line indentations, since

Python is very strict about line formatting. If the script starts up without any

complaints, you’re ready to test it out.

6.11 Testing the Delivery Processor

With the Python script written and either (or both) FedEx and UPS customer

accounts and web developer API keys registered, we can now proceed with

running the sketch and listener script through a functional test. Load a valid,

recent FedEx or UPS tracking number into the trackingstatus table in the pack-
agedelivery database. To do this, you can use the same SQLite Manager plug-

in for Firefox that was used to create the database tables. Simply select SQLite

Manager from Firefox’s Tools menu, then open the packagedelivery.sqlite file. Click

102 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

the trackingstatus table listed in the left column area, followed by the Browse &

Search tab. Lastly, click the Edit button to add/modify the tracking number

record(s).

Conversely, if you prefer the faster (though less visually stimulating) sqlite3
command-line interface, add your own tracking number(s) via the following

SQL statement (remembering, of course, to replace the YOURTRACKINGNUM

placeholder with a valid FedEx or UPS tracking number):

sqlite> INSERT INTO tracking("tracking_number","description","delivery_status")\
VALUES ("YOURTRACKINGNUM", "My Package Being Tracked","0");

Quickly check that the record was indeed correctly added to the tracking table

with a simple select statement:

sqlite> select * from tracking;
1|YOURTRACKINGNUM|My Package Being Tracked|0|

Add any other valid FedEx or UPS tracking numbers as well to test the iterative

lookup functionality that was coded into the Python script. For the purposes

of this test, tracking numbers don’t have to only be those for packages in

transit. In fact, it’s best to have a mix of both in-transit and delivered packages

to verify that the script correctly updated only those packages with tracking

numbers that have a confirmed delivery status.

The moment of truth has arrived. Power up the Arduino/XBee package delivery

hardware. Make sure the receiving XBee is plugged into your computer via

the FTDI cable and execute the python packagedelivery.py command. Press firmly

on the force sensitive resistor and wait for the script to process the tracking

number queries. If everything worked successfully, you should have received

an email from the Gmail account you used for the SMTP gateway that listed

all confirmed package deliveries. You can also execute another select * from
tracking; query from the sqlite3 command line to verify that the boolean delivered
field has been changed from 0 (false) to 1 (true), and that the appropriate time

stamp (indicating when the package was actually delivered) was recorded in

the deliver_time field.

If the script failed or if the values were not properly stored, reset the records

in the tracking table and use a variety of debugging approaches with the script

(the easiest being the venerable print() function) to determine where problems

are arising in the script’s execution.

Once the tests have successfully and repeatedly passed, we’re ready to install

the hardware configuration outdoors in a convenient location close to a

power outlet.

report erratum • discuss

Testing the Delivery Processor • 103

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

6.12 Setting It Up

First, identify an appropriate spot to place the pressure plate. Most parcel

delivery companies drop off packages at a resident’s front door, just off to the

left or right side so as not to block the entrance. To help guide to placement

of the packages, you can leave a note or sign for the courier to specifically

drop boxes on the designated rectangular pressure plate we built for the

project.

Better yet, use or build a container with a lid and place the sensor-embedded

plate on the bottom of the container. You can purchase inexpensive, sturdy,

water-resistant containers that also act as large seats when the top lid is

down. With a little extra work, you can place the Arduino and XBee radio in

a hard-shelled, waterproof enclosure and carefully mount the assembly to

the inside of the container.

Tuck it far enough to the side so that it does not obstruct any packages that

might forcibly land on the assembly and possibly damage the electronics.

Post a note asking delivery personnel to place packages in the container.

Depending on how frequently you receive parcels, this new behavior may be

adopted quickly by those who manage the routes in your area.

Due to the proximity of the detector to the front entrance of the home, an

outdoor power outlet should be easy to locate and use. If the placement of

your assembled detector happens to be in direct sunlight for most of the day,

you can even try powering the electronics via a solar cell battery like the one

recommended for the Tweeting Bird Feeder project.

With everything set up and powered, test out the detector for yourself. Try

boxes of various shapes, sizes, and weights to see how the configuration reacts

to each. You may need to reposition the force sensitive resistor to achieve a

consistent trigger. Adding a second and even a third force sensitive resistor

will also greatly improve detection, especially for smaller packages that may

not hit the center sensor plate.

Your Package Delivery Detector is now complete and ready to process deliver-

ies. Place orders with your favorite online retailers to see how much more

convenient and reassuring it is to know that an anticipated package is

awaiting your retrieval when you get home.

104 • Chapter 6. Package Delivery Detector

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

6.13 Next Steps

It is easy to extend the detector beyond package delivery notification. Here

are a few ideas that can be used to further develop the concept.

• The current design is limited to one package delivery before it needs to

be reset. Enhance the sketch and Python script to account for multiple

package deliveries from multiple couriers. For instance, if a courier delivers

a package that triggers a threshold event, set a new threshold value such

that another delivery can be detected and verified before you retrieve the

first package.

• When the force sensitive resistor’s threshold is exceeded, capture a photo

of the delivery in progress and send it as an attachment with the delivery

email confirmation.

• Enhance the database portion of the Python script to store the results of

the package delivery query and write a web front end in Django to use as

a package delivery history tool.

• Place the force sensitive resistor under your front doormat and be alerted

when a visitor comes calling before the doorbell rings. To remotely unlock

the door for trusted individuals, combine with a webcam and an electric

lock from Chapter 9, Android Door Lock, on page 143.

• If you frequently receive packages, employ message notification alternatives

beyond email and Twitter. Write a package delivery notification service

for Android or an iMessage-enabled delivery app for iOS that will natively

alert you about package arrivals.

• Shrink the delivery detector assembly with the same Arduino Nano/XBee

configuration used in Chapter 5, Tweeting Bird Feeder, on page 59. Swap

out the force sensitive resistor with a PIR to notify you when a hand

reaches into your mailbox.

• Combine the detector with the guard dog from Chapter 4, Electric Guard

Dog, on page 45. Use the force sensitive resistor to notify the guard dog

to power up and look for movement. Combine with a laser and range

finder to accurately “paint the target” to greet visitors with a high-tech

welcome.

report erratum • discuss

Next Steps • 105

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 7

Web-Enabled Light Switch

Imagine coming home after a long day at work and being able to power on

lights, televisions, and appliances simultaneously from a native control appli-

cation running on your mobile phone. Any electrical device with a standard

power plug can be a part of this vision.

We’re going to make that vision a reality with the help of a networked comput-

er, a Ruby on Rails web application, a native Android phone application, and

an older home automation technology known as X10. We will build a native

remote light switch Android application that can turn lights on and off with

the touch of an onscreen toggle switch (Figure 21, Easily control your home's

lighting and electrical appliances, on page 108). When we’re finished, we’ll have

the ability not only to control appliances nearby but also anywhere there is

an Internet connection, should we decide to make the Rails server publicly

accessible.

7.1 What You Need

X10 is a company that has been selling its proprietary electrical switches for

many years, and the technology has changed little since its introduction over

thirty years ago. Yet regardless of its age, X10 power switches are still a pri-

mary home automation technology, mostly because they are inexpensive and,

when coupled with a computer, can send and schedule power on/off events.

Instead of relying on X10’s rigid and proprietary Windows-based application

to control X10 devices, we are going to use a freely available open source

utility called Heyu. Created and maintained by Daniel Suthers and Charles

Sullivan, Heyu provides a command-line interface to monitor and send a

variety of X10 commands to the CM11A. These instructions will then be

relayed to the specified X10 switches.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 21—Easily control your home’s lighting and electrical appliances ...from your own

custom smartphone application.

For this project, it is best to stick with the Linux or Mac operating system,

since they can easily compile the source code without modification. Unfortu-

nately, there is no native port of Heyu available for Windows, and none is

planned anytime in the near future. If you are using Windows, consider

running a Linux distribution in a virtual machine using a program like

VirtualBox.1

You will need the following parts (refer to the photo in Figure 22, Web-Enabled

Light Switch parts, on page 109):

1. X10 CM11A computer interface2—note that unlike the serial port-based

CM11A, the newer X10 CM15A model connects to a computer via USB

and will not work with Heyu software. See the Heyu FAQ for more details.3

2. X10 PLW01 standard toggle wall switch

3. Serial to USB interface cable

1. https://www.virtualbox.org/

2. http://www.x10.com

3. http://www.heyu.org/heyu_faq.html

108 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

https://www.virtualbox.org/
http://www.x10.com
http://www.heyu.org/heyu_faq.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 22—Web-Enabled Light Switch parts

4. An Android OS phone or tablet device (used to run the Web-Enabled Light

Switch client application)

5. A computer (not shown), preferably Linux or Mac-based, with Ruby 1.8.7

or higher installed

Additionally, you will need the following software:

• Heyu 2.9.3 or higher5

• Ruby on Rails 3.0 or higher6

• The Eclipse IDE7

• The Android SDK 1.5 or higher8

• The Android Development Tools (ADK) Plugin for Eclipse9

At the heart of any computer-assisted X10 setup is the control module. The

module provides the interface between the transmission of instructions to

X10 devices as well as for the notifications of triggers (ex: motion detection)

from X10 appliances equipped with such capabilities. Several of these inter-

faces exist, such as the X10 Firecracker (known by its serial number as the

5. http://heyu.org

6. http://www.rubyonrails.com

7. http://eclipse.org

8. http://developer.android.com/sdk

9. http://developer.android.com/sdk/eclipse-adt.html

report erratum • discuss

What You Need • 109

http://heyu.org
http://www.rubyonrails.com
http://eclipse.org
http://developer.android.com/sdk
http://developer.android.com/sdk/eclipse-adt.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

How Does X10 Work?

The basic premise behind X10 is sending unique pulse codes over existing electrical

wiring to devices capable of acting on those codes. Each device is manually set to its

own unique house code and device code, H8 for example. To activate an X10 power

switch, this unique identifier is transmitted from a control interface plugged into a

power outlet. Using the home’s existing electrical wiring, the house code leaves the

control interface as a series of pulses that traverses over the wiring. The X10 device

that is set to the target code recognizes that it is the recipient of the code that follows.

The function code can consist of a simple on or off message that in turn triggers the

relay in the receiving X10 module. This in turn switches on or off the power going to

the lamp or appliance plugged into the module. Besides the basic on and off codes,

other instructions can be sent as well, such as setting a light dimmer to 25 percent

or even turning all X10 devices on or off simultaneously. For a more comprehensive

explanation and a list of these codes, visit the Heyu website.a

a. http://www.heyu.org/docs/protocol.txt

CM17A) or the original X10 computer interface, the CM11A. Most of the open

source X10 automation software available today supports both of these and

other interfaces, but I find the CM11A to be the most prevalent. Hence, I

recommend using the CM11A for this project.

With the required hardware and software in hand, let’s take a look at how we

are going to combine all this technology to make it turn a light on and off

from an Android smartphone application.

7.2 Building the Solution

In order for X10-managed lights and appliances to be remotely controlled, we

are going to assemble a variety of separate technologies and use them in a

unified way. We will do the following:

1. Test the X10 computer interface and modules with the Heyu application.

2. Create a Ruby on Rails application that provides a web-based front end

to a subset of Heyu commands.

3. Create an Android mobile application that will communicate with the

Rails application, turning the light on and off via a native onscreen Android

toggle switch control.

We will start by hooking up the X10 hardware and verifying that it can be

controlled via the Heyu application.

110 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://www.heyu.org/docs/protocol.txt
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 23—The X10 CM11A interface controls the Web-Enabled Light Switch.

7.3 Hooking It Up

Plug the X10 CM11A into an outlet near your computer so that its interface

cable is within reach of your computer. Because the CM11A uses a 9-pin

serial connection, you will need a USB-to-serial adapter and the appropriate

driver, similar to the illustration shown in Figure 23, The X10 CM11A interface

controls the Web-Enabled Light Switch, on page 111. If you use a Mac running

OS version 10.6 or higher, you can download the PL-2303 driver from the

Prolific website.10 Computers running the latest Linux distributions should

have no trouble identifying and connecting to the PL-2303 interface.

Next, plug the USB-to-serial adapter into a USB port on your computer and

attach it to a powered CM11A interface. You’ll need to interrogate the device

for the serial port that the operating system assigned to the interface. You

can do this via locating the appropriate tty device file in the /dev directory by

issuing a ls /dev/tty* command in the terminal window. Easier still, load up the

Arduino IDE and select the Tools→Serial Port menu option. In my case, the

device name of the CM11A is /dev/tty.usbserial, as shown in Figure 24, The Ar-

duino Tools menu displaying the USB serial adapter name, on page 112. Note

the name of the new device path since you will need to refer to it in the Heyu

configuration file.

10. http://www.prolific.com.tw/eng/downloads.asp?ID=31l.

report erratum • discuss

Hooking It Up • 111

http://www.prolific.com.tw/eng/downloads.asp?ID=31l
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 24—The Arduino Tools menu displaying the USB serial adapter name

Now that the CM11A is connected to and recognized by your computer,

download the Heyu source code from the Heyu.org website, uncompress the

tarball via the tar -zxvf heyu-2.9.3.tar.gz command. Then, perform a ./Config-
ure;make;make install cycle to install the compiled application. If you use a Mac,

you need to have the Mac developer tools installed before proceeding.11 If you

are using a Linux computer, make sure you have the necessary gcc compile

and make tools installed. For example, if you are using a Debian-based Linux

distribution like Ubuntu, issue sudo apt-get install build-essential from the terminal

window to download and install the compiler and linker tools. Then, execute

the usual ./Configure, make, and sudo make install to compile the source and install

the heyu executable and dependencies on your computer.

Along with the heyu executable, a x10.conf configuration file is installed in the

/etc/heyu directory. Open this file for read-write editing (ex: sudo vi /etc/heyu/x10.conf).

There are a number of options that can be set in the x10.conf file, but the one

we’re most concerned with now is the serial port path to the CM11A that you

identified earlier.

11. http://developer.apple.com/technologies/tools/

112 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Serial port to which the CM11a is connected. Default is /dev/ttyS0.
TTY /dev/tty.usbserial

Use your favorite text editor to enter the serial port value that matches the

location of your CM11A device. Save the file and test the settings by first

launching the Heyu state engine via a terminal window with the command:

> heyu engine

If no errors are reported, you’re in good shape since the engine daemon found

the device and is running successfully in the background. You can also try

entering heyu info for more details about the Heyu configuration. Now, in the

same terminal enter this:

> heyu monitor

This will monitor the interaction of the CM11A with other X10 devices. Assum-

ing you have set the housecode of the PLW01 wall switch to H3, enter this

command:

> heyu on h3

That should turn on the switch and complete the circuit for whatever electrical

device (such as a ceiling lamp) it is routing electricity to. You should also see

the terminal window running the Heyu monitor process report the transmittal

of the command:

07/25 12:45:34 sndc addr unit 3 : hu H3 (_no_alias_)
07/25 12:45:34 sndc func On : hc H

Turn off the switch by issuing an off command to the H3 device:

> heyu off h3
07/25 12:50:17 sndc addr unit 3 : hu H3 (_no_alias_)
07/25 12:50:18 sndc func Off : hc H

If these commands fail to turn the switch on and off, try another X10 module,

like an AM486 Appliance module. If that also fails, try bringing the wall switch

closer to the X10 computer interface, preferably on the same room wiring.

The majority of issues I have encountered with X10 projects are often directly

associated with the reliability of the fire-and-forget protocol of X10 itself. If

you suspect the problem may be the X10 hardware, try swapping the X10

device in question with replacement hardware. You can also have an electrician

check for line noise or electrical wiring issues that may be hindering the

transmission of X10 pulses from the CM11A interface to the accompanying

X10 modules.

report erratum • discuss

Hooking It Up • 113

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

X10 Problems

While X10 is the most prevalent (and most advertised) low-cost home automation

solution available today, it does have a number of constraints. Besides the problems

with its fire-and-forget protocol (i.e., X10 sends out messages but has no way to ver-

ify whether or not the device acknowledged and acted upon the request), the other

big problem with X10 is its use of home electrical wiring to propagate its signals.

Home wiring often is both noisy and degrades over time. Such wiring connectivity

can be exacerbated by X10 modules plugged into surge-protecting power strips and

other line-conditioning end points that can filter out the intentional fluctuations that

X10 commands dump into the electrical stream. Depending on how far the X10 signal

needs to travel, additional X10 modules may be required to ensure that X10 commands

reach their intended destination. Yet even with these annoyances, X10 remains one

of the most cost-effective and easiest home automation solutions to implement. Even

though a number of competing alternatives to X10 have been introduced over the

thirty-plus years that X10 has been commercially available, none have yet matched

X10’s low cost and ease of implementation.

Once the computer and CM11A are talking to one another via the heyu com-

mand-line interface, we can leverage this functionality by encapsulating it

into a web application. This way, we can easily access and control X10 end

points from a web browser and ultimately from an Android application.

7.4 Writing the Code for the Web Client

For the Web-enabled light switch, we will create a simple Ruby on Rails project

to manage the user interface interaction first via a web browser. We won’t

spend a lot of time on the user interface, though, since that will ultimately

be the job of the custom Android application we will create after the web in-

terface is functionally tested.

Rails runs optimally on Mac or Linux computers, and it is already installed

by default on Mac OS X 10.6. However, it is not the latest version. Because

this project requires Rails 3.0 or higher, the instructions are not applicable

to older versions of the framework. Follow the instructions on the Ruby on

Rails website to get the latest Rails release running on your computer.

With the Rails web framework installed, create a new directory and switch to

that directory before creating the new Rails project:

> mkdir ~/projects/ruby/rails/homeprojects/
> cd ~/projects/ruby/rails/homeprojects
> rails new x10switch

114 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

create
create README
create Rakefile
create config.ru
create .gitignore
create Gemfile
create app
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/mailers
create app/models
...
create vendor/plugins
create vendor/plugins/.gitkeep

Next, change into the new x10switch directory and create a new controller called

command with an action called cmd() to manage the interaction between the

web interface and the Heyu terminal application.

> cd x10switch
> rails generate controller Command cmd

create app/controllers/command_controller.rb
route get "command/cmd"

invoke erb
create app/views/command
create app/views/command/cmd.html.erb
invoke test_unit
create test/functional/command_controller_test.rb
invoke helper
create app/helpers/command_helper.rb
invoke test_unit
create test/unit/helpers/command_helper_test.rb

Then, locate the app/controllers/command_controller.rb file and check for the on and

off parameters and execute the appropriate action:

class CommandController < ApplicationController
def cmd

@result = params[:cmd]

if @result == "on"
%x[/usr/local/bin/heyu on h3]

end

if @result == "off"
%x[/usr/local/bin/heyu off h3]

end
end

end

report erratum • discuss

Writing the Code for the Web Client • 115

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

The %x is a Ruby construct to execute an application with command-line

arguments. Hence, %x[/usr/local/bin/heyu on h3] tells Heyu to send an on command

code to the H3 house code X10 switch. Likewise, the %x[/usr/local/bin/heyu off h3]
tells that same switch to turn off.

Next, edit the app/views/command/cmd.html.erb document and replace its placeholder

contents with the following single line of embedded Ruby code to display the

results of the On and Off request:

The light should now be <%= @result %>.

While we could go much further with this Rails application, dressing it up

with a nice user-friendly interface accessed from the public/index.html file as well

as providing more verbose output of the result of the action, I will leave that

exercise for the aspiring reader. Since we will ultimately be controlling the

switch from a native mobile client application, there’s little incentive to invest

time in whipping up a sparkly web UI when it will hardly ever be seen.

Finally, edit the config/routes.rb file and replace the get "command/cmd" with the

following:

match "/command/:cmd", :to => 'command#cmd'

This instructs the Rails application on how to route incoming command

requests to execute the on/off actions. Save your work and get ready to

rumble!

If you’re setting up a newer version of Rails (such as Rails 3.1) on a Linux

system, you may also need to install a few package dependencies (or gems

as they’re known in Ruby parlance) in order for Rails to run. Just edit the

Gemfile file that was generated in the x10switch directory and add the following:

gem 'execjs'
gem 'therubyracer'

Save the changes and then run this command:

> bundle install

This will download and install the extra files used by the Rails 3.1 JavaScript

processing engine. With these two gems successfully installed, you’re ready

to run and test out the X10switch Rails application.

7.5 Testing Out the Web Client

With the X10 computer interface working and plugged into the serial port of

the computer, fire up a development server of the Rails 3 code via this:

116 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

> cd ~/projects/ruby/rails/homprojects/x10switch
> rails s

=> Booting WEBrick
=> Rails 3.0.5 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach
=> Ctrl-C to shutdown server
[2011-03-18 16:49:31] INFO WEBrick 1.3.1
[2011-03-18 16:49:31] INFO ruby 1.8.7 (2009-06-12) [universal-darwin10.0]
[2011-03-18 16:49:31] INFO WEBrick::HTTPServer#start: pid=10313 port=3000

Open a web browser on the local machine and enter the following:

http://localhost:3000/command/on

If everything is coded correctly, you should see The light should now be on. in the

browser window, as shown in Figure 25, The browser should indicate the

proper status of the light, on page 118.

More importantly, Heyu should have executed the on command for the X10

device coded with the H3 house code. In other words, the light should have

turned on. Turn the light off by submitting the off command:

http://localhost:3000/command/off

If the light turned off, congratulations! You have wired up and programmed

everything correctly. When you’re ready to expand the Rails application to

handle even more commands, just add more if @result == statements to the

CommandController class containing the command you want Heyu to transmit.

These commands could range from dimming lights to 30 percent, turning an

appliance on for a specified duration, or managing a combination of power

on/off events.

If you’re interested in learning more about programming web applications

using the Ruby on Rails framework, check out Programming Ruby: The

Pragmatic Programmer’s Guide [TFH09].

Now that the web application server is working, it’s time to build a mobile

client.

7.6 Writing the Code for the Android Client

You might be wondering why you should go through the trouble of building

a native Android client when the web application we wrote can be accessed

by the Android mobile web browser. Well, if all you wanted to do was toggle

light switches on and off, then I would say you don’t need a native client. The

web interface works just fine and can be further enhanced using AJAX and

report erratum • discuss

Writing the Code for the Android Client • 117

http://localhost:3000/command/on
http://localhost:3000/command/off
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 25—The browser should indicate the proper status of the light.

slick HTML5/CSS3 user interface effects. But if you want to give a little more

intelligence to the app, such as activating power switches based on your

proximity to them or running an Android service that monitors inbound X10

events like motion detection and then sounds an alert on your phone to bring

such events to your attention, a dynamic web page just won’t do.

If you haven’t already done so, download, install, and configure the Eclipse

IDE, the latest Android SDK, and the ADK plug-in for Eclipse. Visit the Android

SDK website for details on how to do so.12

You will also need to create an Android Virtual Device (AVD) so that you can

use it to test the client application in an Android emulator before sending the

program to your Android device.13 I suggest creating an AVD that targets

Android 1.5 (API Level 3) so that it emulates the largest number of Android

phones available.

Launch the Eclipse environment and select File→New→Android Project.

Depending on the version of Eclipse you are running, this option might also

be found on the File menu via New->Other->Android->Android Project. Call

the project LightSwitch and select Build Target as Android 1.5. You can choose

a higher Android version depending on what level of Android device you want

to deploy the application to, but since the LightSwitch program will be sweet

and simple, Android 1.5 should be adequate for this sample application.

In the Properties area, fill in the Application name as Light Switch and the

Package name as com.mysampleapp.lightswitch, and check the Create Activity

checkbox and enter LightSwitch. You can specify the Min SDK Version if you

wish, but since we’re developing for one of the more popular lowest-common-

denominator versions of Android, we’ll leave it blank for now. Before you

continue, check to see if your New Android Project dialog box looks like the

one shown in Figure 26, Creating a new Android Project dialog box with com-

pleted parameters, on page 119.

12. http://developer.android.com/sdk

13. http://developer.android.com/guide/developing/devices/managing-avds.html

118 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://developer.android.com/sdk
http://developer.android.com/guide/developing/devices/managing-avds.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 26—Creating a new Android Project dialog box with completed parameters

Android developers with good testing practices would then click the Next

button in the New Android Project dialog box to set up a Test Project resource.

However, in the interest of space and time, we’ll go ahead and click the Finish

button.

Once the Android Development Tools Eclipse plug-in generates the skeleton

Light Switch application code, double-click the main.xml in the res/layout folder

to open it into Android’s simple form editor. Drag a ToggleButton control from

the Form Widgets palette onto the main.xml graphical layout. Don’t worry

about perfectly aligning the control in the right spot for now. For this exercise,

we’re more interested in function over form.

Because this application won’t require anything beyond the basic features

found in the earlier Android operating system releases, change the Android

report erratum • discuss

Writing the Code for the Android Client • 119

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 27—The graphical form layout of the Light Switch application

version in the upper right corner drop-down box of the form editor to Android

1.5. Also, feel free to delete the default Hello world TextView element from the

layout. When done, the layout should look similar to the screen shown in

Figure 27, The graphical form layout of the Light Switch application, on page

120. Save the main.xml file.

Expand the src→com.mysampleapp.lightswitch tree and double-click the

LightSwitch.java file. Because we will be using the ToggleSwitch widget, the

first thing we need to import is the android.widget.ToggleButton class.

Next, add the java.net.URL and java.io.InputStream libraries, since we’ll be creating

URL objects to pass to Java InputStream object. The import statement section

of the LightSwitch.java file should now look like this:

package com.mysampleapp.lightswitch;
import android.app.Activity;
import android.os.Bundle;
import android.widget.ToggleButton;
import android.view.View;
import java.net.URL;
import java.io.InputStream;

120 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Now we have to make the LightSwitch aware of the ToggleSwitch by finding

it by ID in the LightSwitch class’s OnCreate event and adding an event listener

to monitor when the switch is toggled on and off:

public class LightSwitch extends Activity {
/** Called when the activity is first created. */

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
final String my_server_ip_address_and_port_number =
"192.168.1.100:3344";

final ToggleButton toggleButton =
(ToggleButton) findViewById(R.id.toggleButton1);

toggleButton.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v) {

if (toggleButton.isChecked()) {
try {

final InputStream is = new URL("http://"+
my_server_ip_address_and_port_number +"/command/on").openStream();

}
catch (Exception e) {
}

} else {
try {

final InputStream is = new URL("http://"+
my_server_ip_address_and_port_number +"/command/off").openStream();

}
catch (Exception e) {
}

}
}

});
}

}

Be sure to set the my_server_ip_address_and_port_number string in the example above

to the IP address and port that you plan to use to run the Rails application

server we wrote in Section 7.4, Writing the Code for the Web Client, on page

114. And that’s it! Go ahead and run the application in the Android emulator

to make sure it compiles and shows up on the screen correctly.

7.7 Testing Out the Android Client

Time to test out the application on a real X10 light switch. Assuming the

Rails-based X10 web application is working as expected, start up your Rails

report erratum • discuss

Testing Out the Android Client • 121

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

development server on the same network/subnet as the emulator in Figure

28, Running the Light Switch application, on page 123.

Use the same port number as the one we assigned in the my_server_ip_ad-
dress_and_port_number string from our Android application. For example, in the

case of 192.168.1.100:3344, the IP address is 192.168.1.100 and the port number

is 3344. Pass this as a command-line parameter when launching the Rails

server instance, like this:

> rails s -p3344

With the rails development server now running on port 3344 and waiting for

inbound requests on the same local area network as your Android emulator

or device, click the On/Off toggle button.

Um, nothing happened. Why?

There is one more important setting we have to make in the Light Switch

application configuration. We have to respect the Android application security

model and tell the Android OS that we want to allow our application to Use
the Internet so that we can have our outbound HTTP requests reach the outside

world. To do so, double-click the AndroidManifest.xml file and add the following

line just above the closing manifest tag, like this:

<uses-permission android:name="android.permission.INTERNET">
</uses-permission>

The entire AndroidManifest.xml file should now look like this:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.mysampleapp.lightswitch"
android:versionCode="1"
android:versionName="1.0">

<application android:icon="@drawable/icon"
android:label="@string/app_name">

<activity android:name=".LightSwitch"
android:label="@string/app_name">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
<uses-permission android:name="android.permission.INTERNET">
</uses-permission>

</manifest>

122 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 28—Running the Light Switch application

Recompile and run the Light Switch application with the new permission

setting and click the toggle button. If everything worked as planned, you

should see the Rails server report something similar to the following success-

fully received request:

Started GET "/command/on" for 192.168.1.101 at Sat Mar 21 19:48:10 -0500 2011
Processing by CommandController#cmd as HTML
Parameters: {"cmd"=>"on"}

Rendered command/cmd.html.erb within layouts/application (11.7ms)
Completed 200 OK in 53ms (Views: 34.7ms | ActiveRecord: 0.0ms)

You should also see the light turn on! Click the toggle button again. It should

generate a similar report for the off command:

Started GET "/command/off" for 192.168.1.101 at Sat Mar 26 19:52:30 -0500 2011
Processing by CommandController#cmd as HTML
Parameters: {"cmd"=>"off"}

Rendered command/cmd.html.erb within layouts/application (13.2ms)
Completed 200 OK in 1623ms (Views: 40.0ms | ActiveRecord: 0.0ms)

Consequently, the light should now switch off.

report erratum • discuss

Testing Out the Android Client • 123

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

On rare occasions, one other issue you may encounter when you attempt to

install the Light Switch application on your Android phone is an expired debug

key. Android’s security model requires a signed key to execute code on an

Android device. The signed key should have been automatically generated

and configured when you installed the Android SDK, but in the event that

an expiration message occurs, follow the signing procedure in the Android

SDK documentation to generate a new key.14

For more details on installing Android programs onto an Android device from

the Eclipse environment, review the Android SDK documentation on running

Android applications on an emulator and on a device.15

7.8 Next Steps

Congratulations! Now that you can control a lamp or appliance via a graphical

toggle switch on your Android phone, a whole new world of home automation

possibilities awaits.

You could continue to enhance the native mobile client by controlling multiple

X10 switches in a facile and elegant manner based on the time of day and

the GPS coordinates of your mobile device (ex: turn on the porch light after

dark when you’re within a five-meter radius of the front door). While we won’t

be building this location-based application in this book, you have the basic

building blocks already in your possession. If you’re interested in going further,

read Ed Burnette’s Hello, Android [Bur10] for some really helpful tutorials,

then post your ideas and creations on the Programming Your Home website!

Several other improvements can be made to the configuration to make the

system more robust and user friendly. These include the following:

• Improve application error trapping and reporting. X10 methods are “fire

and forget” events that do not inherently return success or failure. As

such, there are plenty of enhancements that can be made to the web

service to troubleshoot nearly everything else up to the point of X10

command transmissions. Before sending a message, trap for and report

on X10 computer interface connection errors. Knowing that the X10 inter-

face is down is far more helpful than seeing no action from the switch

without any explanation of why.

14. http://developer.android.com/guide/publishing/app-signing.html

15. http://developer.android.com/guide/developing/building/building-eclipse.html

124 • Chapter 7. Web-Enabled Light Switch

report erratum • discuss

http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/developing/building/building-eclipse.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

• Invest in several more X10 modules, ranging from two-way (LM14A) and

the Socket Rocket lamp (LM15A) to wall socket (SR227) and heavy-duty

appliance (HD243) modules. Send Heyu transmission events simultane-

ously to multiple X10 devices. For example, using a single method call,

turn on lights in the kitchen; power up the toaster, coffee maker, and

ceiling fan; and report back to the mobile client when coffee will be brewed

and a toasted bagel will be ready.

• If you prefer a more lightweight Ruby-based web framework, consider

replacing the Ruby on Rails server application with one using Sinatra.16

While it hasn’t yet matched the popularity of Rails, Sinatra is nevertheless

a pretty nifty minimalist Ruby-based framework that is worthy of a closer

look.

• Dress up the mobile user interfaces with a more elegant, multifunctional

front end that can be used for multiple web-enabled switches, appliances,

garage door openers, and more.

• Extend functionality to other projects, such as an Arduino-based TV

remote, or link together interface controls to other projects in this book,

such as Chapter 8, Curtain Automation, on page 127, and Chapter 9, An-

droid Door Lock, on page 143.

16. http://www.sinatrarb.com/

report erratum • discuss

Next Steps • 125

http://www.sinatrarb.com/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 8

Curtain Automation

One of the more frequent effects in science fiction movies about home life is

the autonomous opening and closing of curtains and window shades. Well,

the future is here and it’s about to get more evenly distributed. In this project,

we will construct a system that will open and close curtains based on light

and temperature. When the heat goes up, the curtains close. Likewise, when

the sun comes up, the curtains open (Figure 29, Automate curtains and

shades, on page 128).

To bring motion to this solution, our primary hardware component will be a

stepper motor, a continuous rotational engine that will be driven by an Arduino

to spin a certain number of revolutions clockwise and counterclockwise. When

the shaft of the stepper motor is connected to a curtain string and pulley

system, the motor will open and close the curtains accordingly.

Let’s take a look at the other supplies we will need to build this project.

8.1 What You Need

The parts required for this project are fairly straightforward. Sensors for light

and temperature, a stepper motor, and an Arduino board are the primary

components. Then it’s just a matter of mounting and powering the assembly.

Refer to the photo in Figure 30, Curtain Automation parts, on page 129.

Specifically, we will need the following:

1. Four 2-inch angle brackets to mount the stepper motor in place

2. A 12V bipolar stepper motor1

3. Arduino motor shield2

1. https://www.adafruit.com/products/324

2. http://www.adafruit.com/products/81

report erratum • discuss

https://www.adafruit.com/products/324
http://www.adafruit.com/products/81
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 29—Automate curtains and shades ...depending on light and temperature.

4. A 12V power supply3

5. Double-sided foam tape to dampen the vibration of the mounted stepper

motor

6. A grooved rubber pulley wheel to grip and move the curtain drawstring

7. Wire to connect the sensors and stepper motor to the motor shield

8. A TMP36 analog temperature sensor (for a close-up image of a photocell

and a temperature sensor, see Figure 31, Curtain Automation sensors, on

page 130)4

9. A 10k ohm resistor (usually coded with brown, black, orange, and gold

bands)

10. A photoresistor (the same type we used in Chapter 5, Tweeting Bird

Feeder, on page 59)

11. An Arduino Uno

12. A small breadboard to mount the photocell and temperature sensors

13. A standard A-B USB cable (not pictured) to connect the Arduino to the

computer.

3. https://www.adafruit.com/products/352

4. https://www.adafruit.com/products/165

128 • Chapter 8. Curtain Automation

report erratum • discuss

https://www.adafruit.com/products/352
https://www.adafruit.com/products/165
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 30—Curtain Automation parts

This project assumes you already have curtains hung on a pulley-based

system. If you don’t already have curtains in place, there are a number of

how-to sites on the Web to assist with hanging curtain rods and setting up

the pulley system. The project works best with the continuous drawstring,

traverse rod-based hanging curtains. That is, as you pull down on the left

side of the string, the right side goes up, and vice versa.

You will also need find the size of pulley wheel that best suits your curtain

configuration. For simple curtain rod/drawstring-based systems, a 1-inch-

diameter grooved rubber pulley wheel should do just fine. You can obtain a

variety of pulley wheel sizes from home hardware, auto parts, and even some

craft stores.

Ideally, the center hole of the pulley wheel should snuggly slip onto the

stepper motor’s drive shaft so that it doesn’t fall off or slip when the shaft is

rotating. If you have a home improvement store nearby, bring your stepper

motor and try the various pulley wheels at the store to save time and hassle.

Once you’ve found the perfect size and fit, you’re ready to start assembling

the project.

report erratum • discuss

What You Need • 129

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 31—Curtain Automation sensors

8.2 Building the Solution

We have several objectives to complete for our project to work as intended.

First, we will test the stepper motor by writing a sketch using Adafruit’s AFMotor
library. This assumes that you have already constructed the motor shield.

Follow the instructions on Adafruit’s website for more details on assembling

and using the motor shield.5

After we have a working stepper motor’s drive shaft that rotates back and

forth based on the instructions we have the Arduino execute, we will hook

up the photo resistor. We will borrow from the same light sensor routine we

wrote for the Tweeting Bird Feeder. When this photosensor detects light that

exceeds the threshold we establish, the stepper motor drive shaft will spin

clockwise for a predetermined number of revolutions. When light diminishes

below the low threshold value that we set, the shaft will spin the same number

of revolutions in the opposite direction. When the shaft spins, the attached

pulley will open or close the curtain accordingly.

In addition to light detection, we also need to account for room temperature

in case it exceeds a certain value. If the room starts to get too warm, we can

spin the drive shaft counterclockwise to close the curtain even when there is

daylight. If the temperature cools off to a comfortable level and it’s still day-

light, the shaft will spin clockwise to reopen the curtains.

5. http://www.ladyada.net/make/mshield/make.html

130 • Chapter 8. Curtain Automation

report erratum • discuss

http://www.ladyada.net/make/mshield/make.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Once our detectors are working and tested, we will attach the pulley wheel

to the stepper motor’s drive shaft. Then we will wrap the curtain drawstring

around it and determine where we can mount the stepper motor/pulley

assembly on the wall. The location of the assembly needs to keep the curtain

drawstring taut enough so that it will not slip when the pulley is revolving.

Next we will calibrate the number of revolutions required by the stepper motor

to open and close the curtain. After those settings are determined, we can

increase the speed (revolutions per minute) of the stepper motor to establish

how quickly or slowly the curtain should open or close.

With these steps in mind, let’s first take a look at how we can write a sketch

that will control the stepper motor.

8.3 Using the Stepper Motor

Electrical motors work on the principle of electromagnetism to drive the central

shafts. As the magnetic field changes around the coils that wrap around the

shaft, the change in current propels the shaft forward or backward. Stepper

motors refine this principle by allowing granular control of the motor to “step”

in well-defined increments. This makes these motors excellent choices for

any mechanical task requiring precise control.

Stepper motors are used in ink jet printers, plotters, and disk drives; they

are also found in a number of types of industrial manufacturing equipment.

The motor we will use for this project is a popular 12-volt, 350-milliamp, 200-

steps per revolution bipolar stepper motor. This motor should provide enough

torque to move all but the heaviest of curtains. Because the motor pulls 12

volts of power, it will need to operate from a 12-volt power supply instead of

the 5 volts that the standalone Arduino board can deliver. Fortunately, the

Arduino board has the electronics necessary to accept a 12-volt power supply

that can power the Arduino, the motor shield, and the stepper motor.

Assuming that you have already built a working Adafruit motor shield, here

are the steps needed to set up the stepper motor for programming:

1. Connect the four wires from the 12-volt bipolar stepper motor. If your

stepper motor is the recommended one from Adafruit, the wiring sequence

by color should be red, yellow, green, brown. Refer to the photo in Figure

32, Bipolar stepper motor wiring, on page 132.

2. Attach the motor shield to the top of the Arduino Uno.

3. Plug the 12-volt power supply into the Arduino power port.

4. Connect a USB cable from the computer to the Arduino.

report erratum • discuss

Using the Stepper Motor • 131

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 32—Bipolar stepper motor wiring

Now that the hardware is connected, we can focus on writing an Arduino

sketch that will drive the stepper motor.

8.4 Programming the Stepper Motor

In order to get the stepper motor to work the way we want it to, we need to

import a library that makes it easy to incrementally rotate the motor’s shaft

in either direction at the speed we want it to move. Fortunately, controlling

a stepper motor is easy thanks to Adafruit’s AFMotor motor shield library.6 As

you do with most Arduino libraries, extract the downloaded zip file, rename

the extracted folder (AFMotor), and place it in the Arduino libraries folder. For

more details, refer to Appendix 1, Installing Arduino Libraries, on page 211.

With the AFMotor library installed, launch the Arduino IDE. Let’s write a sketch

that will test the stepper motor. The code will do the following:

1. Load the AFMotor library.

2. Create an AFMotor stepper motor object and set the stepper’s connection

and steps per revolution (i.e., how fast the stepper motor’s shaft rotates).

6. https://github.com/adafruit/Adafruit-Motor-Shield-library

132 • Chapter 8. Curtain Automation

report erratum • discuss

https://github.com/adafruit/Adafruit-Motor-Shield-library
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

3. Move the shaft clockwise and counterclockwise using the stepper motor’s

two coils. By the way, this action is known as double-coil activation, and

it produces greater torque compared to using just a single coil at a time.

We will need that extra torque to move the curtain string.

Here’s what the completed sketch should look like:

Download CurtainAutomation/StepperTest.pde

#include <AFMotor.h>

AF_Stepper motor(48, 2);

void setup() {
Serial.begin(9600);
Serial.println("Starting stepper motor test...");
// Use setSpeed to alter speed of rotation
motor.setSpeed(20);

}

void loop() {
// step() function
motor.step(100, FORWARD, DOUBLE);
motor.step(100, BACKWARD, DOUBLE);

}

Note that this test code is essentially a subset of the sample code available

from Ladyada’s motor shield web page.7

Save and upload the sketch to the Arduino. If all goes well, your stepper motor

should spin clockwise and counterclockwise until you remove power or upload

a new sketch. If the shaft isn’t moving, make sure your stepper motor wiring

is properly connected. Also make sure that you are using a 12-volt power

supply connected to the Arduino, since the motor needs that amount of voltage

to move. If you’re having a hard time seeing which direction the shaft is rotat-

ing, affix a small piece of folded tape on the shaft. It should be easier to see

the tape flag move back and forth as the shaft moves.

Now that your hardware is working, it’s time to add the temperature and light

sensors to give the stepper motor a bit more relevance to its intended motion.

8.5 Adding the Sensors

It’s time to combine the working stepper motor with the photosensor we used

in the Tweeting Bird Feeder project. Photosensor readings will be taken every

7. http://www.ladyada.net/make/mshield/use.html

report erratum • discuss

Adding the Sensors • 133

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/StepperTest.pde
http://www.ladyada.net/make/mshield/use.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

second, and depending on the outdoor light levels, they will trigger the stepper

motor to open or close the curtains. We will also add a temperature sensor

so that we don’t open the curtains if it’s already too warm in the room or so

that we close the curtains if the room temperature exceeds a predetermined

level.

Fortunately for this type of project, which relies on the analog pins to measure

light and temperature, the motor shield does not use any of the Arduino’s

analog pins. Therefore, we will attach one lead of the photocell to the 5V

power pin and the other lead to analog pin 0. And just like the Tweeting Bird

Feeder project, we need to bridge the 10k ohm resistor from the analog pin

0 to ground. Using a breadboard for this is much easier than wrapping the

leads in series. Plus, the breadboard will make a good stand to keep the

photocell propped up and angled toward the outdoor light.

The temperature sensor has three leads: the first will connect to the 5V

power pin, the temperature sensor’s middle lead will connect to analog pin 5,

and the third (far right) lead will connect to the ground pin. The motor shield

makes this easier. Refer to Figure 33, Curtain Automation stepper motor and

sensor wiring diagram, on page 135, for setting this up. Note that although the

diagram shows an Arduino, the wiring will actually be connecting to the motor

shield mounted on top of the Arduino (hence the wiring on the side for the

stepper motor connection as well as the wiring to analog pin 5 and the ground

and 5V pins on the right side of the shield).

We will poll the variable values of these two sensors every second and react

accordingly should the threshold values we established for these measure-

ments be exceeded. Let’s write the sketch that will do just that.

8.6 Writing the Sketch

The sketch for this project borrows from ideas we encoded in two other

projects. The sensor readings come from the Tweeting Bird Feeder, and the

state machine for the open or closed status was copied from the Water Level

Notifier. As such, here is the complete sketch.

Download CurtainAutomation/CurtainAutomation.pde

#include <AFMotor.h>①

#define LIGHT_PIN 0②

#define LIGHT_THRESHOLD 800
#define TEMP_PIN 5
#define TEMP_THRESHOLD 72
#define TEMP_VOLTAGE 5.0
#define ONBOARD_LED 13

134 • Chapter 8. Curtain Automation

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/CurtainAutomation.pde
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 33—Curtain Automation stepper motor and sensor wiring diagram

③ int curtain_state = 1;
int light_status = 0;
double temp_status = 0;

boolean daylight = true;
boolean warm = false;

AF_Stepper motor(100, 2);

void setup() {④

Serial.begin(9600);
Serial.println("Setting up Curtain Automation...");
// Set stepper motor rotation speed to 100 RPMs
motor.setSpeed(100);
// Initialize motor
// motor.step(100, FORWARD, SINGLE);
// motor.release();
delay(1000);

}

⑤ void Curtain(boolean curtain_state) {
digitalWrite(ONBOARD_LED, curtain_state ? HIGH : LOW);

report erratum • discuss

Writing the Sketch • 135

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

if (curtain_state) {
Serial.println("Opening curtain...");
// Try SINGLE, DOUBLE, INTERLEAVE or MICROSTOP
motor.step(800, FORWARD, SINGLE);

} else {
Serial.println("Closing curtain...");
motor.step(800, BACKWARD, SINGLE);

}
}

void loop() {⑥

// poll photocell value
light_status = analogRead(LIGHT_PIN);
delay(500);

// print light_status value to the serial port
Serial.print("Photocell value = ");
Serial.println(light_status);
Serial.println("");

// poll temperature
int temp_reading = analogRead(TEMP_PIN);
delay(500);

// convert voltage to temp in Celsius and Fahrenheit
float voltage = temp_reading * TEMP_VOLTAGE / 1024.0;
float temp_Celsius = (voltage - 0.5) * 100 ;
float temp_Fahrenheit = (temp_Celsius * 9 / 5) + 32;
// print temp_status value to the serial port
Serial.print("Temperature value (Celsius) = ");
Serial.println(temp_Celsius);
Serial.print("Temperature value (Fahrenheit) = ");
Serial.println(temp_Fahrenheit);
Serial.println("");

if (light_status > LIGHT_THRESHOLD)
daylight = true;

else
daylight = false;

if (temp_Fahrenheit > TEMP_THRESHOLD)
warm = true;

else
warm = false;

switch (curtain_state)
{
case 0:

if (daylight && !warm)

136 • Chapter 8. Curtain Automation

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

// open curtain
{
curtain_state = 1;
Curtain(curtain_state);

}
break;

case 1:
if (!daylight || warm)
// close curtain
{
curtain_state = 0;
Curtain(curtain_state);

}
break;

}
}

① Reference the AFMotor library that will be used to drive the stepper motor

attached to the Adafruit motor shield.

② We will define several values up front. This will make it easier to change

the LIGHT_THRESHOLD and TEMP_THRESHOLD values as we refine the stepper

motor trigger points.

③ Variables for storing curtain state—as well as the analog values of the

photocell and temperature sensors two boolean variables, daylight and warm
—are used in the main loop’s conditional statements to identify the status

of daylight and the indoor room temperature. We also assign the number

of steps per revolution (in this case, 100) and the motor shield port that

the stepper motor is attached to (in this case, the second port per the

wiring diagram) by creating an AF_Stepper object called motor.

④ Here’s where we initialize the serial port to output the light and tempera-

ture readings to the Arduino IDE serial window, as well as initialize the

speed of the motor (in this case, 100 revolutions per minute).

⑤ The Curtain function will be called when the light or temperature

thresholds are exceeded. The state of the curtains (open or closed) is

maintained so that the motor doesn’t keep running every second the

threshold is exceeded. After all, once the curtains are opened, there’s no

need to open them again. In fact, doing so might even damage the stepper

motor, grooved pulley, or curtain drawstring.

If the Curtain function receives a curtain_state of true, the stepper motor

will spin counterclockwise to open the curtains. A curtain_state value of false

will spin clockwise to close the curtains.

report erratum • discuss

Writing the Sketch • 137

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

We will also use the Arduino’s onboard LED to indicate the status of the

curtains. If the curtains are open, the LED will remain lit. Otherwise, the

LED will be off. Since the motor shield will be covering the top of the

Arduino, the onboard LED won’t be easily visible, but it will still serve as

a good visual aid for debugging purposes.

⑥ The main loop of the sketch is where all the action happens. We poll the

analog values of the photocell and temperature every second, convert the

electrical value of the temperature sensor both to Celsius and—for those

who have yet to convert to the metric system—Fahrenheit. If the light

sensor exceeds the LIGHT_THRESHOLD value we assigned in the #define section

of the sketch, then it must be daytime (i.e., daytime = true). However, we

don’t want to open the curtains if it’s already warm in the room, since

the incoming sunlight would make the room even warmer. Thus, if the

temperature status exceeds the TEMP_THRESHOLD, we will keep the curtains

closed until the room cools down. After checking the status of the

curtain_state, we will pass a new state to the Curtain routine and open or close

the curtains accordingly.

Verify, download, and execute the sketch on the Arduino. Leave the Arduino

tethered to your computer and open the Arduino IDE’s serial window to see

the light and temperature values being captured by the sensors. Now we can

verify whether exceeding the threshold values produces the desired effect of

activating the stepper motor (see Figure 34, Test the Curtain Automation

sketch, on page 139).

Test the Curtain Automation sketch first by covering the photocell with your

finger to verify that the stepper motor rotates the shaft in the counterclockwise

direction. Remove your finger, and the shaft should rotate clockwise the same

number of times. Blow warm air or use a blow dryer to warm up the air around

the temperature sensor. When the threshold is exceeded, the stepper motor

shaft should spin clockwise. This translates to open curtains being closed.

Before removing the heat source, cover the photocell with your finger again.

Then remove the heat source. The stepper motor shaft should remain

motionless.

Remove your finger from the photocell. If the air surrounding the temperature

sensor has cooled, the shaft should rotate counterclockwise. If it doesn’t rotate,

blow air on the temperature sensor to cool it down; it should react once the

temperature drops below the target threshold. Verify that your sketch reacted

when the designated threshold values for light and temperature were exceeded.

You may need to tweak these threshold values to ensure that the stepper

motor reacts when the desired light densities and room temperature are

138 • Chapter 8. Curtain Automation

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 34—Test the Curtain Automation sketch

attained. You may also need to consider omitting a light or temperature sensor

range for the assigned threshold values. Otherwise, the stepper motor may

act a bit jittery as the light or temperature wavers back and forth between

triggered threshold values.

After you have confirmed that the sensors are properly reporting their values

and the stepper motor shaft moves when the threshold values are exceeded,

we can seat the sensors on a windowsill and mount the stepper motor on the

wall next to the curtains. Once the system is working, you can also choose

to reposition the sensors anywhere inside the room as long as the wire attach-

ing the sensors to the Arduino board is long enough. If you do so, make sure

that the wire and sensors are not in an area where they might accidentally

be stepped on or where the connecting wire could be tripped over.

8.7 Installing the Hardware

When setting up the sensors, you can leave them seated in the small bread-

board we used during the testing of the Curtain Automation sketch. I used

a piece of foam double-sided tape to keep the breadboard seated in place,

with the sensors pointing toward the window like a high-tech flower box. Also,

the stepper motor tends to get very warm when in use, so as an added safety

precaution, be sure to mount the motor away from anything flammable. For

report erratum • discuss

Installing the Hardware • 139

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

example, make sure the stepper motor is mounted away from the curtains

or shade that you’re opening and closing!

Measure the distance from the breadboard sitting on the windowsill to where

you want to place the Arduino+motor shield. The Arduino can be mounted

on a table, in an enclosure, or even on the wall if you prefer. I recommend

using an extra foot or two of wire wrapped in a loop just in case you need to

relocate the Arduino later. Also take into account the placement of the 12V

power supply brick and the electric cord that has to plug into the Arduino to

power the Arduino, the motor shield, and the stepper motor.

Slip the rubber-grooved pulley wheel onto the stepper motor shaft. Loop the

curtain drawstring around the pulley wheel. Pull the stepper motor down

until the drawstring is taut around the pulley wheel. Before permanently

mounting the stepper motor, attach the four angle brackets to it using double-

sided foam tape. The tape will keep the motor in place while you screw in the

mounting brackets. The foam tape will also help dampen vibrations against

the wall and keep the operation quiet when the stepper motor shaft is operat-

ing. You may also want to affix the stepper motor first to the wall, using tape

to hold it in place, just to be sure that the curtain drawstring isn’t looped too

tightly or too loosely around the pulley attached to the stepper motor shaft.

Don’t make the string too taut in case you need just enough slack to allow

for recalibration should the string happen to slip when the pulley spins.

Perform a few tests before screwing the angle brackets to the wall. This will

verify that the drawstring around the pulley has just the right amount of

tension and friction to be pulled by the rotating pulley when the stepper motor

runs. When you’re satisfied with the placement of the stepper motor, screw

the four angle brackets into the wall.

Calibrate the speed and number of revolutions that the stepper motor needs

to make to fully open and close the curtains. Start in small increments at

first, remembering to apply the same number of revolutions in both clockwise

and counterclockwise directions. You can estimate the number of revolutions

needed to draw the curtains open and closed by measuring the distance that

the drawstring moves with each revolution of the pulley. Divide this by the

total distance that the curtains need to move to completely open and close.

This will give you the total number of stepper motor shaft rotations you need

to program to open and close the curtains.

Distance curtain moves with one stepper motor shaft rotation = 5 centimeters
Total distance curtain needs to move from start to finish = 90 centimeters
90 cm / 5 cm = 18 rotations

140 • Chapter 8. Curtain Automation

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 35—Curtain Automation, installed and calibrated

When the system is perfectly calibrated, mark the drawstring with a felt

marker at the points where the string meets the pulley when the curtains are

opened and closed. This will help should you need to recalibrate the drawstring

if it falls out of sync over time. Once configured, your setup may look like

Figure 35, Curtain Automation, installed and calibrated, on page 141.

Test the system a few times by covering the photocell and artificially heating

the temperature sensor with your breath or a blow dryer. Observe when the

photocell triggers the curtain opening and closing events. If it’s too sensitive

or opens the curtains as a result of indoor light reflecting off the glass, you

may need to reposition the photocell in a different location. I taped the sensor

to a corner of the window using black electrical tape. This helped minimize

the sensor from being exposed and reacting to indoor room lighting.

Allow the assembly to run a few days, noting when the curtains should react

to light or temperature triggering the sensors. Alter the temperature and light

sensitivity values accordingly. Once everything is set up correctly, you should

only need to check on the curtain string’s position once every couple of weeks

for any recalibration adjustments. After a while, you will simply take the

autonomous curtains for granted. Visiting guests seeing the curtains in oper-

ation for the first time will be amazed by your high-tech handiwork.

report erratum • discuss

Installing the Hardware • 141

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

8.8 Next Steps

The motor shield can handle up to two stepper motors at a time. This might

be useful in a large room with more than one window. The curtains’ pulley

systems can also be linked together so that a single stepper motor could open

and close multiple curtains/shades. Going even further, the stepper mo-

tor/motor shield combination can be employed in a number of other home

automation scenarios.

• Elaborate on the curtain pulley with more sophisticated curtain rod sys-

tems that have an interior up/down window blind and exterior left/right

curtain draw. Time one motor to raise/lower the blind followed by

opening/closing the decorative exterior curtain. Modify these two config-

urations based on heat and light (i.e., if hot daylight, open curtain but

close blind).

• Add a PIR sensor to the Arduino+motor shield assembly so you can open

and close the curtains when motion is detected in the room.

• Network-enable the curtain automation assembly with an onboard LED

or an Arduino Ethernet so you can open and close your curtains from

your smartphone or write a script that will operate the curtains during

certain times of the day.

• Keep the Arduino with motor shield assembly connected to the USB port

of your computer and drive the curtains remotely via USB-to-serial com-

munication. Set up a web application server to expose the open/close

methods as web services to be called from a native smartphone application.

Write a script that runs on the host computer to open and close the cur-

tains at a specified date and time.

• Repurpose the pulley system for Halloween fun by swapping out the light

and temperature sensors with a motion sensor. Attach the pulley string

to big paper spiders that go up and down when motion is detected.

• Create a stepper motor-driven carousel for clothing with unique RFID

tags affixed to each hanger. Queue up a random outfit or base the selection

on criteria such as day, month/season, and current outdoor temperature.

Make a phone or tablet app that allows you to gesture to a photo of your

desired outfit onscreen and then have that clothing selection waiting for

you front and center in your closet.

142 • Chapter 8. Curtain Automation

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 9

Android Door Lock

Tired of carrying around old-fashioned metal keys to your home? You’re

probably already carrying a smartphone. Wouldn’t it be much more convenient

to open your front door via an app that you built for your smartphone instead?

Wouldn’t it also be a nice security feature to take a photo of the person(s)

unlocking your door with this app and email that captured photo as an

attachment to yourself? (See Figure 36, Open doors wirelessly using a

smartphone, on page 144.)

In this project, we are going to use an inexpensive, first generation Android

phone. We will connect it to a Sparkfun IOIO (“yo-yo”) board and a relay switch

to operate an electrified door latch. The first-gen Android phone will run a

server that will respond to your unlock requests sent from a second Android

phone running the door unlock client. When the unlock request is triggered,

the server phone will snap a photo using the phone’s built-in camera and

silently email the captured image to you. Let’s go and make it!

9.1 What You Need

I originally designed this project using a relay switch that we would have

constructed part by part. This relay would have been used to turn on and off

the power to the electric door latch. But after reviewing the potential safety

hazards associated with improper wiring and handling of the circuit, I decided

to take a safer, more conservative approach.

Instead of wrestling with the potentially jolting perils of accidental relay

shocks, we will use a product specifically designed to address these concerns.

Called the PowerSwitch Tail II, this simple switch houses a relay that can

control standard 120V electrical devices. The relay can be energized via a 5V

signal from a digital pin of a microcontroller board such as an Arduino or, in

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 36—Open doors wirelessly using a smartphone

the case of this project, the PIC-based IOIO board. The PowerSwitch Tail’s

prebuilt relay circuit is far easier and safer than building your own, and the

cost is quite reasonable compared to the expense of procuring and assembling

these parts on your own.

Rather than using an Arduino connected to a computer for data processing

and control, we are going to use an Android phone connected to Sparkfun’s

IOIO board. This hardware combination will serve the same function as an

Arduino/PC coupling but without the size, bulk, and energy requirements

that an always-on Arduino/PC combination would entail.

So what exactly is an IOIO board? It is a hardware bridge that allows Android

phones to communicate with whatever sensors and motors are connected to

the board. The IOIO board connects to the phone via Android’s USB debugging

pathway. This pathway can be used to send and receive signals to and from

the IOIO’s onboard PIC processor.

IOIO’s designer, Google software engineer Ytai Ben-Tsvi, designed the IOIO

prior to Google’s official Open Accessory Protocol (ADK) initiative,1 but he is

1. http://accessories.android.com

144 • Chapter 9. Android Door Lock

report erratum • discuss

http://accessories.android.com
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

working to make the board fully compatible with the ADK specification. The

ADK is part of Google’s Android@Home home automation initiative. Investing

in the board not only gives you the tools you need to make it work today, but

it will also play nice with the future Android@Home APIs. And even more

importantly, the IOIO works especially well today for custom projects like the

one we will build.

Here is a list of all the parts we will need to construct the Android Door Lock

(refer to the photo in Figure 37, Android Door Lock parts (some preassembled),

on page 146):

1. A PowerSwitch Tail II (PN 80135)2

2. A 2.1mm female barrel jack cable to safely connect the 12V power supply

to the electric door strike3

3. A 5VDC 1A power supply4

4. A 12V 5A switching power supply to electrify the electric door strike5

5. Three pieces of wire

6. An Android OS smartphone with a built-in camera, preferably the original

Android G1 phone. This phone can be purchased from sites like

craigslist.org or ebay.com for under $100 US. Note that not all Android

phones are compatible with the IOIO Board. Check the IOIO Board dis-

cussion group for more details.6

7. A barrel jack to 2-pin JST cable that will connect to the IOIO board’s JST

right angle connector7

8. A Sparkfun IOIO Board with JST right angle connector8

9. A Smarthome Electric 12VDC Door Strike9

10. A standard A to Mini-B USB cable to connect the G1 Android phone to

the USB port on the IOIO board

You will also need a second Android device (phone, tablet, etc.) that can run

the Door Lock client application along with the Eclipse IDE, Android SDK 1.5

or higher, and the Android Development Tools (ADK) plugin for Eclipse. Refer

2. http://www.sparkfun.com/products/10747

3. http://www.adafruit.com/products/327

4. http://www.sparkfun.com/products/8269

5. http://www.adafruit.com/products/352

6. https://groups.google.com/group/ioio-users?pli=1

7. http://www.sparkfun.com/products/8734

8. http://www.sparkfun.com/products/10748 and http://www.sparkfun.com/products/

8612, respectively.

9. http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.aspx

report erratum • discuss

What You Need • 145

http://craigslist.org
http://ebay.com
http://www.sparkfun.com/products/10747
http://www.adafruit.com/products/327
http://www.sparkfun.com/products/8269
http://www.adafruit.com/products/352
https://groups.google.com/group/ioio-users?pli=1
http://www.sparkfun.com/products/8734
http://www.sparkfun.com/products/10748
http://www.sparkfun.com/products/8612
http://www.sparkfun.com/products/8612
http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.aspx
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 37—Android Door Lock parts (some preassembled)

to the Web-Enabled Light Switch project for more details about the Android

development requirements.

While this project is one of the most expensive to build in this book, it is also

one of the most flexible in terms of reusing and extending the hardware

investment. Once you become familiar with how to leverage the IOIO board

with an Android phone, you will understand why Google is so enthusiastic

about their Android@Home effort. You will also learn how you can easily

create a new category of home automation applications implementing your

own ideas. But before you can attain those greater heights of actualization,

you have to understand the basics. That’s what we’re going to do in the next

section.

9.2 Building the Solution

This is a fairly complex project and certainly the most challenging one in the

book. We will spend a majority of the time assembling and testing this project’s

hardware. After the hardware has been tested, we’ll program the Android

phone to talk to the IOIO board, the onboard phone’s camera, and the wireless

network. Then we’ll write a simple Android client application we can execute

from another Android device that will trigger the IOIO board to turn on the

PowerSwitch Tail, which will in turn power the electric door strike that unlocks

146 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

IOIO Successor?

Sparkfun announced a new, ADK-compliant development board based on the Arduino

Mega ADK that uses Google’s Open Accessory protocol. Called the Electric Sheep,a

this new board also features an onboard FTDI header and DC power connector, obvi-

ating the need for the separate components required by the IOIO. However, the board

is also twice as expensive as the IOIO and requires more power. Fortunately, the

Electric Sheep has plenty of analog and digital pins and can be programmed using

Google’s ADK and the Arduino Android Handbag.b As such, this more powerful

Android@Home-friendly board will likely replace the IOIO board in the future.

a. http://www.sparkfun.com/products/10745

b. http://handbagdevices.com/

the door. Here are the steps we’ll take to assemble, program, and deploy the

Android Door Lock:

1. Attach the JST connector to the Sparkfun IOIO board so that the IOIO

board can be powered by the 5V power supply.

2. Tether the Android G1 phone to the IOIO board via the USB cable.

3. Plug the Smarthome Electric 12VDC Door Strike into the 12V power

supply via the 2.1mm female barrel jack cable.

4. Connect the PowerSwitch Tail to the IOIO board via three wires for the

PowerSwitch Tail’s power, control, and ground connectors.

5. Program the Android phone to trigger the PowerSwitch Tail via the IOIO

board.

6. Snap a photo using the Android phone’s built-in camera when the Power-

Switch Tail is triggered.

7. Send the resulting image as a message attachment to a designated email

recipient.

8. Write a native client application for a second Android device that will be

used to unlock the door strike.

9. Install the Electric Door Strike in the desired doorframe, routing the

electrical wiring to a nearby outlet.

10. Bundle the controller components (the PowerSwitch Tail circuit and the

IOIO board) into an easily accessible wall-mounted lock box that can be

serviced in case parts need to be replaced.

report erratum • discuss

Building the Solution • 147

http://www.sparkfun.com/products/10745
http://handbagdevices.com/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

11. Mount the Android phone running the door lock server application near

the entry with the camera lens facing the door so images of those entering

can be easily captured.

The most time-consuming aspects are the soldering of the JST right angle

connector to the IOIO board and the wiring of the circuit between the IOIO

board and the PowerSwitch Tail. Everything else is simply a matter of plugging

into the right segment in the series. Essentially, the 5V power supply plugs

into the IOIO board, the Android phone plugs into the IOIO via the USB cable,

the PowerSwitch Tail, controlled by the IOIO board, plugs into the wall on

one side and the 12V power supply on the other, and the electric door strike

plugs into the 12V power supply.

The first thing you should do is solder the JST right angle connector to the

IOIO board. It would have been much easier for Sparkfun customers had the

connector been preinstalled on the board. But hey, that’s part of the fun

(along with the terror should something go horribly wrong when an expensive

component accidentally gets fried) that these projects have to offer. Fortunate-

ly, soldering the connector isn’t too difficult and will make powering the board

and the Android phone vastly easier.

After the JST connector is attached to the IOIO board, plug the barrel jack

to 2-pin JST cable into the JST connector on the board and the 5V power

supply. Then attach the Android phone via a USB cable to the IOIO board.

You’re halfway there!

Attach the positive and negative wires of the electric door strike to the positive

and negative leads of the 2.1mm female barrel jack cable. The positive wires

are those with a white strip along the side of the wire casing. Use electrical

tape or, better still, heat shrink tubing to safely cover any exposed wire.

Connect the barrel jack to the 12V power supply.

Test the strike by plugging the 12V power supply into your standard 120V

wall socket. You should see the LED on the power supply light up, followed

by an audible click from the strike. Note that while electrified, you will be able

to move the spring latch on the strike back and forth without much resistance.

Unplug the 12V power supply from the wall and the strike will return to its

fixed, nonelectrified state. Consequently, you should be unable to move the

latch.

Next, let’s connect the PowerSwitch Tail to the IOIO board. Follow along with

Figure 38, Android Door Lock wiring diagram, on page 149. Using three wires,

connect one from the ground pin on the IOIO board to the the negative lead

on the PowerSwitch Tail.

148 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 38—Android Door Lock wiring diagram

Connect the middle (control) lead on the PowerSwitch Tail to the IOIO board’s

digital pin 3. Why not pin 0, 1, or 2? That’s because not all IOIO boards can

handle the 5V signal required to electrify the relay in the PowerSwitch Tail.

Pulling 5V from a pin not capable of this voltage could damage the IOIO board.

Refer to the IOIO board wiki or simply flip the IOIO board over and look for

the pins that are enclosed by a white circle.12 The circle indicates that the

enclosed pin is 5V pullup capable. When wired, your IOIO board should look

like the one shown in Figure 39, Wiring the IOIO board, on page 150.

Finally, attach a wire from the positive lead from the PowerSwitch Tail to any

of the three 5V pins on the left lower corner of the IOIO board. The circuit is

complete.

At this point, nothing will happen until we program the necessary instructions

to turn pin 3 on and off, thereby signaling the PowerSwitch Tail to do the

same. As such, we are going to write a simple Android program with an

onscreen toggle switch that will instruct pin 3 to do just that.

12. https://github.com/ytai/ioio/wiki

report erratum • discuss

Building the Solution • 149

https://github.com/ytai/ioio/wiki
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 39—Wiring the IOIO board

9.3 Controlling the Android Door Lock

Before we can write an elaborate server for the Android phone, we first need

to write a test program that will validate the circuit we constructed in the last

section.

Be sure to have installed the plug-ins for the Android SDK and Eclipse IDE

with the Android Development Tools on your computer. Refer to Chapter 7,

Web-Enabled Light Switch, on page 107, for the steps on how to configure the

SDK and IDE if you haven’t already done so. Then, download the HelloIOIO

demo project from the Sparkfun IOIO tutorial web page.13 The HelloIOIO

project is a simple application that turns the IOIO’s onboard LED on and off.

We are going modify this simple application by declaring another ToggleButton
object in its main.xml layout file. Then we’ll add four lines of code to the MainAc-
tivity.java file that describe the added ToggleButton action for digital pin 3 on the

IOIO.

Import Sparkfun’s HelloIOIO project into the Eclipse environment via the File

→Import→Existing Projects option. If you prefer, you can also load the modified

HelloIOIO-PTS project available from this book’s code download page that

has all the necessary code additions mentioned in this section.

All IOIO board projects rely on the custom IOIOLib library that must be added

to each IOIO project. Use the following steps to do so:

13. http://www.sparkfun.com/tutorials/280

150 • Chapter 9. Android Door Lock

report erratum • discuss

http://www.sparkfun.com/tutorials/280
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

1. Import the IOIOLib bundle into the Eclipse environment via the same File

→Import→Existing Projects into Workspace menu option.

2. Highlight the HelloIOIO project in the Eclipse Package Explorer pane.

3. Access the Properties option from the Eclipse Project menu.

4. Select Android from the selections on the left column of the Properties

dialog box.

5. Click the Add... button. A Project Selection dialog box should pop up

listing the IOIOLib project. Highlight the IOIOLib item and click the OK

button.

If IOIOLib was successfully imported, it should be listed with a green check-

mark in the Library portion of the Properties dialog box, as shown in Figure

40, IOIOLib successfully imported and referenced, on page 152.

With the IOIOLib properly referenced, edit the /res/layout/main.xml file from the

HelloIOIO project. Add another ToggleButton object to the existing layout by

copying the existing TextView description containing the ToggleButton description

of the toggle button used to turn on and off the IOIO’s onboard LED. Paste it

in right after the original TextView section. Then, rename the android/id value

of the copied toggle button to android:id="@+id/powertailbutton". This will be the

reference accessed in the modified MainActivity class. The modified main.xml file
should look like this:

Download AndroidDoorLock/HelloIOIO-PTS/res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/txtLED"
android:id="@+id/title"/>

<ToggleButton android:text="ToggleButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/button">

</ToggleButton>
<TextView

android:layout_width="fill_parent"
android:layout_height="wrap_content"
android:text="@string/txtPowerTail"
android:id="@+id/title"/>

<ToggleButton android:text="ToggleButton"

report erratum • discuss

Controlling the Android Door Lock • 151

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS/res/layout/main.xml
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 40—IOIOLib successfully imported and referenced

android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/powertailbutton">

</ToggleButton>
</LinearLayout>

Next, add the code for the second toggle button to the MainActivity class that

will turn on and off the signal going to the PowerSwitch Tail. The first addition

is the powertailbutton_ = (ToggleButton) findViewById(R.id.powertailbutton); line, which

associates the powertailbutton_ object with the powertailbutton toggle button

defined in the main.xml file.

With the user interface addition of the toggle button for the PowerSwitch Tail,

we can add the object reference to the MainActivity class located in the

/src/ioio/examples/hello/pts/MainActivity.java file:

152 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Download AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java

private ToggleButton button_;
private ToggleButton powertailbutton_;

Instantiate the powertailbutton_ object in the MainActivity OnCreate method, like this:

Download AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java

@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);
button_ = (ToggleButton) findViewById(R.id.button);
powertailbutton_ = (ToggleButton) findViewById(R.id.powertailbutton);

}

So when the main application window is created, the toggle button for the

PowerSwitch Tail will now be accessible via the MainActivity class. All that

remains is the code needed to listen for the powertailbutton_ toggle action being

turned on and off:

Download AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java

class IOIOThread extends AbstractIOIOActivity.IOIOThread {
/** The on-board LED. */
private DigitalOutput led_;
private DigitalOutput powertail_;①

/**
* Called every time a connection with IOIO has been established.
* Typically used to open pins.
*
* @throws ConnectionLostException
* When IOIO connection is lost.
* @see ioio.lib.util.AbstractIOIOActivity.IOIOThread#setup()
*/

@Override
protected void setup() throws ConnectionLostException {

led_ = ioio_.openDigitalOutput(0, true);
powertail_ = ioio_.openDigitalOutput(3,true);②

}
/**
* Called repetitively while the IOIO is connected.
*
* @throws ConnectionLostException
* When IOIO connection is lost.
*
* @see ioio.lib.util.AbstractIOIOActivity.IOIOThread#loop()
*/

@Override
protected void loop() throws ConnectionLostException {

led_.write(!button_.isChecked());
powertail_.write(!powertailbutton_.isChecked());③

try {

report erratum • discuss

Controlling the Android Door Lock • 153

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS/src/ioio/examples/hello/pts/MainActivity.java
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

sleep(10);
} catch (InterruptedException e) {
}

}
}

① Initialize the DigitalOutput powertail_ object.

② Assign the powertail_ object to the IOIO’s digital pin out 3.

③ Turn on or off the digital signal (i.e., make it High or Low) to IOIO’s digital

pin out 3 when the onscreen toggle button for the PowerSwitch Tail is

toggled on or off.

When the onscreen PowerSwitch Tail toggle button is switched on, it will

instruct the powertailbutton_ instance to send a 5V signal from digital pin 3. This

in turn will electrify the PowerSwitch Tail relay to power on, which will then

electrify the 12V power adapter that will ultimately electrify and release the

lock.

Save your changes, compile the Android application, and install the modified

HelloIOIO program on the phone. Check to ensure that your door hardware

circuit is properly wired and powered. Then plug in the USB cable between

the phone and the IOIO board and execute the modified HelloIOIO program

on the phone.

If nothing happens, verify that the USB Debugging option is checked on the

phone. Also, make sure your wiring is connected correctly. If you have access

to a multimeter or an oscilloscope, check to see that 5 volts are flowing from

the digital pin 3 when the onscreen PowerSwitch Tail toggle switch is set to

the on position. If the output is less than 5 volts, there will not be enough of

a signal from the IOIO board to electrify the PowerSwitch Tail and thus power

the electric door latch.

Now that the hardware is working properly, we will network-enable the lock

so we can open it by requesting a URL from a web server that we will add to

this modified HelloIOIO program.

9.4 Writing the Android Server

Time to write the door lock server. Instead of relying on a personal computer

to perform the heavy lifting of running Python scripts to respond to incoming

requests, we are going to use the computing power embedded in the Android

smartphone itself. Even older Android phones are computationally more

154 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

powerful than desktop computers were only a few years before the Android

OS was introduced.

Besides, an Android phone acting as this project’s server offers a number of

advantages:

• Power requirements are far lower than a desktop computer, making for

much greener energy consumption.

• The phone has onboard Wi-Fi, allowing it to be placed anywhere within

range of the home’s wireless access point.

• The phone has an onboard camera that can be programmed using stan-

dard SDK calls to capture images.

• The phone has other features like Bluetooth and speech synthesis that

we will be using in the Giving Your Home a Voice project.

The phone-based web server application will need to perform the following

functions:

1. Establish a standard web server instance and listen for inbound requests

for a specific URL.

2. When the URL is requested, send a signal for five seconds to power IOIO

board pin 3. This will release the electric lock long enough to allow entry.

3. After the five seconds, use the built-in camera on the web server host

device to take a photo of the person entering the door.

4. Send the captured image as an email attachment to a designated recipient.

5. Return to an idle state and await another properly formatted inbound

request to begin the cycle anew.

In order to construct the web server, we will borrow code snippets from the

open source GNU GPLv3 Android Web Server project available on Google

Code.14 We will also incorporate code (generously posted by Jon Simon) for

sending email messages with attachments from an Android application

without having to rely on intents to do so. 15

Since most intents typically rely on user interaction, it won’t work for our

standalone web server scenario. Combining these two projects with the IOIO

code will allow our program to autonomously listen for and react to door

14. http://code.google.com/p/android-webserver/

15. http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_In-

tents%29_in_Android

report erratum • discuss

Writing the Android Server • 155

http://code.google.com/p/android-webserver/
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_Intents%29_in_Android
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_Intents%29_in_Android
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Joe asks:

What Is an Android Intent?

According to the Android developer documentation, an intent is “an abstract descrip-

tion of an operation to be performed.”a In layman’s terms, intents are used to transmit

and receive messages between Android activities and services. Intents can also send

messages to the same application that generates them, though intents are more

frequently used to send a message from one application, say a web browser that has

downloaded an audio file, to another application, such as a music program.

When multiple applications have been registered to receive certain Intent messages,

a pop-up dialog box might appear, asking the user to select which application to send

the message to. If you’re an experienced Android device user, you have no doubt seen

this pop-up appear at one time or another. Android allows users to select via a

checkbox in the pop-up dialog the default application to send such messages to so

as not to annoy you with chronic pop-ups all the time.

As a result of such user interaction requirements, intents are rarely optimal for entirely

autonomous operations, such as sending email, since the message receiving the Intent

message (in this case, an email application) might still require user interaction to

complete the intended action (i.e., the user would need to click the Send button in

the email program to actually send the email message initiated by the original Intent-

transmitting program).

a. http://developer.android.com/reference/android/content/Intent.html

unlock requests. Lastly, we will rely on bits of Camera Sample code written

by Krishnaraj Varma to capture an image and save it on the Android’s SD

card.17 It will be this image that we will send as an email attachment. However,

before we can start working on this Android program mashup, we need a

more definitive way to access the IP address of the Android phone.

Setting a Static IP Address

By converting the phone’s Wi-Fi IP address from a dynamic to a static address,

it will be much easier to repeatedly locate the phone on a home wireless local

area network. If you haven’t already created a static IP range on your wireless

router, either do so or set the IP address to something higher than 200, since

it’s unlikely you will have that many devices requesting an IP address from

the DHCP server in your wireless router anytime soon.

You can access the configuration setting on most Android phones by selecting

the Settings icon, followed by the Wireless and Network menu selection. Then

17. http://code.google.com/p/krvarma-android-samples/

156 • Chapter 9. Android Door Lock

report erratum • discuss

http://developer.android.com/reference/android/content/Intent.html
http://code.google.com/p/krvarma-android-samples/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

select Wi-Fi settings and press the menu button on the Android phone itself

to bring up a pop-up menu with Scan and Advanced selections. Click the

Advanced menu option. You will then see a screen of menu choices allowing

you to modify a number of network settings, one of which is a Use static IP

checkbox. Click that checkbox to enable the ability to set the Wi-Fi radio’s

IP, subnet, and gateway address as shown in Figure 41, Configuring an Android

device to use a static IP, on page 158. Set these according to your wireless

router network configuration. For example, if your wireless network router

is leasing an address range beginning at 192.168.1.2, your settings can most

likely be configured to the following:

• IP Address: 192.168.1.230

• Gateway: 192.168.1.1

• Netmask: 255.255.255.0

Set the DNS1 and DNS2 values to the DNS address of your choice (I used

Google’s Public DNS in my configuration), though it’s best to set these address-

es to the same domain name servers that your other network clients are using

to maintain consistency on your local area network. When you have entered

the static values, click the Menu button on your Android device and select

the Save option.

Test access to the static IP on the phone by pinging it from another computer

on your network. If you set up the static IP address information successfully,

you should see positive ping results. If not, check your settings and be sure

to save your changes. With the static IP address confirmed, we’re ready to

proceed with writing and testing some Android web server code.

Creating an Android Web Server

Android runs a modified version of the Java Virtual Machine and as such,

brings to it a number of standard Java libraries. That’s a good thing, since

one of the libraries helps to make creating and running a web server trivial

by using just a few lines of code.

Rather than taking up book space showing the contents of the dozens of files

that comprise the full program listing, visit the book’s website and download

the DoorLockServer.zip file. Once downloaded and uncompressed, import the

project into your Android SDK-configured Eclipse environment via the File-

>Import... menu option. If you examine the file’s contents, you will notice a

file named AndroidDoorLockServerActivity.java. Look for the two lines of code in the

private void startServer(int port) method that uses the Android phone’s Wi-Fi IP

report erratum • discuss

Writing the Android Server • 157

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 41—Configuring an Android device to use a static IP

address, port number, and default message handler to start the web server

on the phone.

server = new Server(ipAddress,port,mHandler);
server.start();

This instruction imports the ServerSocket reference and tells Android to listen

for requests on port 80 on our assigned static IP address. Naturally, there is

much more to manage, such as starting and stopping the server from the UI,

making the server a service so Android keeps it running in the background,

keeping the phone from entering sleep mode, acting on inbound requests,

and handling errors.

Now that we have the basic requirements for running a web server from an

Android device, the next task we need to tackle is to combine it with the IOIO

board functionality we enabled in Section 9.3, Controlling the Android Door

Lock, on page 150.

Web Server + IOIO Board

This is where things get interesting. By combining the IOIO test application

we wrote in Section 9.3, Controlling the Android Door Lock, on page 150, with

the web server in the last section, an inbound HTTP request will trigger digital

pin 3 on the IOIO board. This will signal the PowerSwitch Tail to allow power

158 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

to go to the electric door strike. Essentially, we will transplant the IOIO trigger

routine into the web server’s response to an HTTP request. For example,

calling a URL like http://192.168.1.230 will ultimately energize the door lock

and allow entry.

We don’t want to leave the door permanently unlocked by keeping digital pin

3 on, so we will have to turn off power after a set amount of time. Five seconds

should be adequate for our testing purposes. To do so, we will call upon

Android’s Thread.sleep() function to pause program execution for a set duration.

Experienced Android application developers know that this isn’t the most

elegant way to handle pausing program execution because it can make user

interface elements appear unresponsive. However, since the Android device

will be used as a server rather than a client, we won’t have to worry too much

about optimizing the interactive user experience for this program. I set the

delay to five seconds (Thread.sleep(5000)), though you’re welcome to change that

value to close the lock sooner or later, depending on your response time needs.

As before, refer to the code in the DoorLockServer.zip file. Open the project in

Eclipse and focus on the AndroidDoorLockServerActivity class. Note the use of the

try block that activates power to the PowerSwitch Tail for five seconds and

makes the camerasurface.startTakePicture() call to the photo capture routine that

will use the built-in Android camera.

Download AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoor-

LockServerActivity.java

@Override
protected void loop() throws ConnectionLostException {

if (mToggleButton.isChecked()) {
if (LockStatus.getInstance().getLockStatus()) {

try {
powertail_.write(false);

// pause for 5 seconds to keep the lock open
sleep(5000);
powertail_.write(true);
LockStatus.getInstance().setMyVar(false);
// Take a picture and send it as an email attachment
camerasurface.startTakePicture();
} catch (InterruptedException e) {

}
}else {
try {
sleep(10);

} catch (InterruptedException e) {
}
}

} else {

report erratum • discuss

Writing the Android Server • 159

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoorLockServerActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoorLockServerActivity.java
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

powertail_.write(true);
}

}

Compile and run this DoorLockServer project on your Android device. Start

the web server on your Android device. Make sure it is properly connected to

the IOIO board and the board is correctly wired to the PowerSwitch Tail. Access

the IP address of the web server using any web browser that can access your

local area network. If all goes according to plan, your electric door lock should

unlock for several seconds and then relock. Cool!

We’re two-thirds finished with this project. The final component is to take

advantage of the fact that most Android devices (at least the Android phones)

have a built-in camera. We’re going to take advantage of that hardware asset

by snapping a photo inside the door area several seconds after an unlock

request and sending that photo to a designated email recipient. This way you

know not only when an unlock request occurred but also who entered the

door at the designated time.

Taking a Picture

For this part of the project, examine the CameraSurface.java file in the unzipped

DoorLockServer directory. The key functions used to establish a camera surface

and image capture are well documented in the Android SDK, and literally

hundreds of Android photo-capturing code snippets and tutorials are available

on the Internet.18 I based the image capture portion of the web server applica-

tion off of Android developer Krishnaraj Varma’s Camera sample.

Setting up the camera for use in an Android application requires us to import

several Android namespaces. To do so, we will need to perform a few additional

steps to set up the display surface. The key libraries being used by the image

capture portion of the program included in the DoorLockServer.zip file are as

follows:

Download AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSur-

face.java

import android.content.Context;
import android.hardware.Camera;
import android.hardware.Camera.AutoFocusCallback;
import android.hardware.Camera.PictureCallback;
import android.hardware.Camera.ShutterCallback;
import android.util.AttributeSet;
import android.view.GestureDetector;
import android.view.MotionEvent;

18. http://developer.android.com/reference/android/hardware/Camera.html

160 • Chapter 9. Android Door Lock

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
http://developer.android.com/reference/android/hardware/Camera.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

import android.view.SurfaceHolder;
import android.view.SurfaceView;
import android.view.GestureDetector.OnGestureListener;

In addition to accessing the camera hardware itself, we also need to have the

phone display a preview of the image being captured by the camera. To do

so, we will first have to initialize the camera frame and surface variables:

private FrameLayout cameraholder = null;
private CameraSurface camerasurface = null;

These are used to allocate the surface and frame objects accordingly:

camerasurface = new CameraSurface(this);
cameraholder.addView(camerasurface, new
LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));

Krishnaraj uses callbacks to wait for certain operations to finish before pro-

ceeding. Examples of this include waiting for autofocus to set, waiting for the

shutter to close, and waiting for the validation that image data has been

successfully written to the SD card. The use of callbacks ensures that these

events happen in serial fashion such that one won’t begin until the other

ends.

Download AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSur-

face.java

public void startTakePicture(){
camera.autoFocus(new AutoFocusCallback() {

@Override
public void onAutoFocus(boolean success, Camera camera) {
takePicture();

}
});

}

public void takePicture() {
camera.takePicture(

new ShutterCallback() {
@Override
public void onShutter(){
if(null != callback) callback.onShutter();

}
},
new PictureCallback() {

@Override
public void onPictureTaken(byte[] data, Camera camera){
if(null != callback) callback.onRawPictureTaken(data, camera);

}
},
new PictureCallback() {

report erratum • discuss

Writing the Android Server • 161

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

@Override
public void onPictureTaken(byte[] data, Camera camera){

if(null != callback) callback.onJpegPictureTaken(data, camera);
}

});
}

The act of writing data to the SD card occurs in the onJpegPictureTaken event.

Since this image file is going to be sent as an email attachment and it’s not

necessary to store successive captures on the SD card, the image data is

saved with the same filename each time a photo is taken.

162 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

FileOutputStream outStream = new FileOutputStream(String.format(
"/sdcard/capture.jpg"));

outStream.write(data);
outStream.close();

Note that if you prefer to store each progressive image capture on the phone’s

SD card rather than overwrite it with the same filename, you can append a

timestamp to the suffix of the filename using Krishnaraj’s original Camera

code:

FileOutputStream outStream = new FileOutputStream(String.format(
"/sdcard/%d.jpg", System.currentTimeMillis()));

However, I don’t recommend this approach unless you have plenty of storage

capacity on your SD card and don’t mind the duplication of image data on

the phone and in your email inbox. If you do opt for this file naming method,

you will also need to save the timestamped filename so you can later pass it

when calling the email attachment instruction in the program. Now let’s look

at how to attach the image data to the email and send it.

Sending a Message

Now that we have captured and stored the camera-captured temporary image

on the Android’s SD card, we need to rely on a self-contained email routine

that will email the attached photo without any user interface interaction.

Fortunately for this project, we can call upon Jon Simon’s JavaMail for

Android-enhanced email routine. Download and reference the custom JavaMail

for Android jar dependencies for Jon’s email code to work properly.19 We can

then modify the code to account for our image attachment needs. To do so,

we first need to import a number of Java libraries used by the JavaMail class:

import java.util.Date;
import java.util.Properties;
import javax.activation.CommandMap;
import javax.activation.DataHandler;
import javax.activation.DataSource;
import javax.activation.FileDataSource;
import javax.activation.MailcapCommandMap;
import javax.mail.BodyPart;
import javax.mail.Multipart;
import javax.mail.PasswordAuthentication;
import javax.mail.Session;
import javax.mail.Transport;
import javax.mail.internet.InternetAddress;

19. http://code.google.com/p/javamail-android/

report erratum • discuss

Writing the Android Server • 163

http://code.google.com/p/javamail-android/
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;

Methods for public Mail(String user, String pass) and public void addAttachment(String filename)
throws Exception allow us to easily send the captured image file to a designated

recipient. Sending a message is straightforward once the username, password,

recipient, and attachment parameters are defined in onJpegPictureTaken() found

in the AndroidDoorLockServerActivity.java file:

try {
GMailSender mail = new GMailSender("YOUR_GMAIL_ADDRESS@gmail.com",

"YOUR_GMAIL_PASSWORD");
mail.addAttachment(Environment.getExternalStorageDirectory() +

"/capture.jpg");
String[] toArr = {"EMAIL_RECIPIENT_ADDRESS@gmail.com"};
mail.setTo(toArr);
mail.setFrom("YOUR_GMAIL_ADDRESS@gmail.com");
mail.setSubject("Image capture");
mail.setBody("Image captured - see attachment");
if(mail.send()) {

Toast.makeText(AndroidDoorLockServerActivity.this,
"Email was sent successfully.",
Toast.LENGTH_LONG).show();

} else {
Toast.makeText(AndroidDoorLockServerActivity.this,

"Email was not sent.",
Toast.LENGTH_LONG).show();

}
} catch (Exception e) {

Log.e("SendMail", e.getMessage(), e);
}

Replace YOUR_GMAIL_ADDRESS@gmail.com, YOUR_GMAIL_PASSWORD, and EMAIL_RECIPI-
ENT_ADDRESS@gmail.com with your Gmail account credentials. Note that the

recipient does not have to be a Gmail user, so you can send the message to

a non-Gmail account if you prefer to do so.

There are a few other preparatory instructions that are part of the email

transmission process. Examine the downloaded code for a better understand-

ing of all the dependencies and processes that take place to send a message

from an Android device without user intervention.

Setting Hardware Permissions

We’re almost done. By combining four separate Android programs into one,

we are able to listen for an inbound HTTP request, unlock the electric door

164 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

latch via the IOIO board, take a picture using the built-in camera on the

Android device, and send that image as an email attachment.

With the photo capturing and email transmitting code in place, all that remains

is to allow the program to access the camera, Wi-Fi radio hardware, and

network to complete its task. As such, the AndroidManifest.xml file will need to

contain permissions to access not only the network and Wi-Fi stack but also

the camera and SD card:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mysampleapp.androiddoorlockserver"
android:versionCode="1"
android:versionName="1.0">
<uses-sdk android:minSdkVersion="3" />
<uses-permission android:name="android.permission."></uses-permission>
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE">
</uses-permission>
<uses-permission android:name="android.permission.INTERNET">
</uses-permission>
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"/>
<uses-permission android:name="android.permission.CAMERA"/>
<uses-permission android:name="android.permission.VIBRATE"/>
<uses-permission

android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<application android:icon="@drawable/icon"

android:label="@string/app_name">
<activity android:name=".AndroidDoorLockServerActivity"

android:label="@string/app_name"
android:screenOrientation="landscape">

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category

android:name="android.intent.category.LAUNCHER" />
</intent-filter>

</activity>
</application>

</manifest>

After setting the email account username, password, and recipient values as

well as the IP address for your network, you can compile, install, and run the

Android Door Lock server application on your Android smartphone.

Testing the Server

Test out the Android door lock server by accessing its base URL from a web

browser. Verify that the electric lock releases and that the camera takes a

report erratum • discuss

Writing the Android Server • 165

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

photo and sends the image to the designated email recipient. If everything

worked as expected, congratulate yourself on a job well done. Considering

how many dependencies are involved with this project, getting everything to

work just right the first time out is indeed a cause for celebration. If something

went awry, carefully troubleshoot each function separately. Does the web

server respond to requests? Does the PowerSwitch Tail electrify? Does the

camera shutter snap? Also, depending on your network connection and the

speed of Wi-Fi connectivity of your Android phone, it can sometimes take up

to a minute to transmit the photo via email.

We have accomplished quite a bit of this project already, and for the most

part, we could simply set a bookmark for the door lock URL and call it a day.

But let’s invest just a little more effort by creating a custom client for accessing

the door lock URL like we did for the Web-Enabled Light Switch project. That

way, we can quickly access the door lock via a one-click button. Indeed, we

can begin amassing our home automation features into a über-controller

mobile program that accesses our projects in a single collective interface.

9.5 Writing the Android Client

Writing code for the Android client to send unlock commands to the Android

server is easy. Let’s reuse code from the Web Enabled Light Switch Android

client application to provide easy user access to the door latch function. This

time, we will use a button instead of a toggle switch since we already

programmed the lock to unlock for five seconds. This makes the toggle unnec-

essary. Another feature we will add to this application is to turn on the Wi-Fi

radio if it isn’t already active.

The basic flow of the program will be to launch it and check for Wi-Fi access.

If the Wi-Fi radio is turned off, turn it on and wait for the client to connect

to the network. Allow the user to press the displayed Unlock Door button,

which will access the Android Door Lock server URL and unlock the door.

Briefly, here are the steps we will take to code the unlock client:

1. Create an Android project in Eclipse called DoorLockClient.

2. Check if the Wi-Fi radio is on in the program’s main activity. If Wi-Fi is

turned off, activate it.

3. Add a Button to the main.xml layout description and label it “Unlock

Door.”

4. Reference the button in the DoorLock class and a listener for the button

press event. If the Wi-Fi radio is being turned on for the first time when

166 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Security Implications

One advantage of creating a custom Android client for unlocking a door is so that we

also maintain (albeit very weak) security via obscurity to access the door lock. By not

allowing a display of the bookmark URL on the screen when we access the web server,

we keep its address hidden from nontechnical onlookers. However, this will only be

adequate in low network security scenarios, since the URL itself is sent to the server

in the clear. Later, in the Next Steps section of this chapter, one of the recommended

enhancements is to consider adding better security to the project. The addition of a

passcode or, better still, a sophisticated multifactor authentication scheme, will be

a much better door lock system in the long run.

the program starts, keep the Unlock Door button disabled for a few

seconds to allow the Wi-Fi interface to authenticate with the wireless ac-

cess point and establish the client’s IP address.

5. Add the URL request call in the button press event to the Android Door

Lock server (ex: 192.168.1.230).

We will start by following the same procedure used in Section 7.6, Writing the

Code for the Android Client, on page 117. Create a new Android project in

Eclipse using the parameters shown in Figure 42, Settings for the new Door

Lock Client application, on page 168.

Add a button called unlockbutton, label its text “Unlock Door,” and set the but-

ton’s width to fill the LinearLayout of the parent container. The main.xml file
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill_parent">
<Button android:id="@+id/unlockbutton" android:layout_height="wrap_content"
android:text="Unlock Door" android:layout_width="fill_parent"></Button>

</LinearLayout>

Save the changes. Open the DoorLockClient.java file and add references for the

unlockbutton Button element and its event listener. Also add Wi-Fi radio detection

and activation. The full listing for the DoorLockClient.java class should look like

this:

Download AndroidDoorLock/DoorLockClient/src/com/mysampleapp/doorlockclient/DoorLockClient.java

package com.mysampleapp.doorlockclient;

① import java.io.InputStream;
import java.net.URL;
import android.net.wifi.WifiManager;

report erratum • discuss

Writing the Android Client • 167

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockClient/src/com/mysampleapp/doorlockclient/DoorLockClient.java
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 42—Settings for the new Door Lock Client application

import android.widget.Button;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;
import android.view.View;

public class DoorLockClient extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(R.layout.main);

168 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

② Button unlockbutton = (Button) findViewById(R.id.unlockbutton);
findViewById(R.id.unlockbutton).setOnClickListener
(mClickListenerUnlockButton);

try {
WifiManager wm =
(WifiManager) getSystemService(WIFI_SERVICE);③

if (!wm.isWifiEnabled()) {
unlockbutton.setEnabled(false);
wm.setWifiEnabled(true);
// Wait 17 seconds for Wi-Fi to turn on and connect
Thread.sleep(17000);
unlockbutton.setEnabled(true);

}
} catch (Exception e) {

Log.e("LightSwitchClient", "Error: " + e.getMessage(), e);
}

}
View.OnClickListener mClickListenerUnlockButton =

④ new View.OnClickListener() {
public void onClick(View v) {

try {
final InputStream is =
new URL("http://192.168.1.230:8000").openStream();⑤

}
catch (Exception e) {
}

}
};

}

① Import the library references for java.io.InputStream, java.net.URL and Android-

specific android.widget.Button and android.net.wifi.WifiManager.

② Add a reference for the unlockbutton Button and assign it to the mClickListenerUn-
lockButton View method.

③ Query the state of the Wi-Fi radio, and if it’s not active, turn the Wi-Fi

radio on. Keep the unlockbutton disabled for seventeen seconds to allow

enough time for the network connection to initialize.

④ Create the View.OnClickListener for the unlockbutton.

⑤ Request the Android door lock server address when the unlockbutton is

clicked.

We have one more task to complete before we can test out the application.

Remember how we had to set permission to access the network for the Web

Enabled Light Switch Android client? We have to do the same thing for this

Door Lock Client. We also have to grant permission to access the state of the

report erratum • discuss

Writing the Android Client • 169

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Wi-Fi radio as well. These permissions are noted in the AndroidManifest.xml file,

which should look like this once these two permissions are added:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.mysampleapp.doorlockclient"
android:versionCode="1"
android:versionName="1.0">
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />

<application android:icon="@drawable/icon" android:label="@string/app_name">
<activity android:name=".DoorLockClient"

android:label="@string/app_name">
<intent-filter>

<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

Save the project and test it using an available Android phone. First test its

operation with the Wi-Fi radio turned on. The button should be instantly

accessible after the program has launched. Quit the program, preferably using

a task manager (i.e., make sure the running instance of the program is

destroyed and not running silently in the background). Next, turn off the Wi-

Fi radio and launch the Door Lock Client application again. This time, the

Unlock Door button will be disabled while the program turns on the Wi-Fi

radio and waits until a connection with the network has been established. If

the radio turned on, you’re ready for a live test with the door lock server.

Click the Unlock Door button. Within a second or two, the electric lock should

click open and then close approximately five seconds later. If it did, congrat-

ulations on a job well done! If it didn’t, verify that your Android device is indeed

connected to the network. Test the URL access via the Android web browser.

If you can’t access the URL, make sure the Android door lock server is still

set to the static IP we defined earlier and that it is running. Try accessing the

URL from a different system just to verify that the rest of your home network

can access the Android door lock server.

9.6 Test and Install

Now that the Android client is transmitting the URL request via the toggle

button interface, we are nearly finished with this project. Test the lock and

170 • Chapter 9. Android Door Lock

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

photo capture mechanism by powering up the Android phone server, making

sure all the connections between the phone, IOIO board, and PowerSwitch

Tail are connected. Send a request to the Android phone server from the

other Android device running the Android Door Lock client. Note that in order

to test this request successfully, the client Android device needs to be con-

nected to the same Wi-Fi access point as the Android phone server. Your test

rig may look like mine (Figure 43, Testing the Android Door Lock, on page 172).

The final task is to actually install the lock mechanism in the doorframe. This

can be a daunting process if you are not comfortable with boring out wood

and properly routing electrical wiring behind drywall. In fact, I strongly rec-

ommend that if you intend to permanently install this hardware configuration,

contact a reputable carpenter and electrician to assist with the installation.

The extra money you spend will be well worth the safety and security of your

home, and it will keep your sanity intact.

When installing the lock, keep the Android phone, IOIO board, and Power-

Switch Tail in an easy, accessible location. It should go without saying that

you shouldn’t place these in the wall in case you need to service or replace

any of these components in the future, not to mention that they could pose

a fire hazard if the wiring is not correctly shielded. I suggest obtaining a project

box from an electronics supplier. The box should be large enough to fit all

the components, with room for expansion should you need to house additional

hardware for project enhancements. Always practice safe wiring techniques.

Once a circuit is well established, I prefer soldering components in place and

then covering the exposed conductive surface, like circuit leads and stripped

wiring, with heat shrink tubing to prevent any shorting of the circuit. If you

have an electrician assist with the hardware installation, consult with this

professional about best practices and recommendations as well.

9.7 Next Steps

Congratulations! You have just completed one of the most complex projects

in this book. You have come a long way and acquired a great deal of knowledge

and experience. You now have the ability to automate a variety of electrical

devices in your own home. Our final project will combine a number of these

techniques to create an application that will listen for a number of events and

relay these to you via a text-to-speech interface. But before we get started,

consider expanding your Android Door Lock with these additional features:

report erratum • discuss

Next Steps • 171

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 43—Testing the Android Door Lock

• Implement Steve Gibson’s Perfect Paper Passwords to provide a more

secure, multifactor, one-time password authentication scheme.20 By using

the Perfect Paper Password approach, you will be able to share one-time

use entry codes to anyone requiring secure access to your home, such as

visiting health professionals, house cleaning service personnel, and

maintenance workers.

• Connect a PIR sensor to the IOIO board to capture and transmit motion-

detected events. While the current design does something similar, it can

be problematic if entry to the target area is intentionally or unintentionally

delayed. Take advantage of the numerous other analog and digital pins

on the IOIO board and hook up a PIR sensor like the one we used in

Chapter 4, Electric Guard Dog, on page 45.

• Attach more than one electric door lock to the IOIO Web Server program

and access these locks via different URL paths. For example, open the

front door by accessing http://192.168.1.230/frontdoor, and the cellar

door via http://192.168.1.230/cellardoor.

• Go beyond just controlling door locks from an Android phone. Electrify

lights, appliances, computers, and any other electrical device in your

home via the IOIO web server. Expand the web server program on your

Android phone to log events, email status updates, or detect orientation

changes (i.e, someone or something moved the phone) via Android’s

compass and accelerometer sensors.

20. https://www.grc.com/ppp.htm

172 • Chapter 9. Android Door Lock

report erratum • discuss

https://www.grc.com/ppp.htm
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 10

Giving Your Home a Voice

Wouldn’t it be cool to walk into your front door and be greeted by your home,

having it inform you of any important events that occurred while you were

away? How about asking your home to check your email inbox status, read

you the weather forecast, or queue up your favorite music on the stereo? It

could also audibly inform you of triggered sensors in real time, such as telling

you about water-level alerts or birdseed refillings from our first two projects.

(See Figure 44, Event notification, on page 174.)

This project will bring those fanciful ideas to life. We will create a central hub

capable of relaying the communication from all the other projects we built in

this book and do so in a natural speaking voice.

Receiving emails and tweets about what’s going on in your home is pretty

neat, but wouldn’t it be even cooler if you could have a conversation with

your home? What if you could ask it questions like “What time is it?” or dictate

commands like “Turn on the lights” or “Listen to music” and have your home

respond in kind. That’s what we’re going to program in this capstone project

that brings together network-enabled projects like the Web-Enabled Light

Switch and the Android Door Lock and controls them via voice command.

While we’re at it, we will hook into a few other nice-to-have vocal commands

like selecting musical artists and their respective albums for audio playback

on the stereo, turning up and down the volume, and so on.

10.1 What You Need

While we could develop this project on Windows using Microsoft’s Speech API

or on Linux using the open source Festival project, I chose the Mac platform

because I personally find the Text-to-Speech (TTS) renditions in OS X 10.7

(aka Lion) to be the best of the voices that ship between the three operating

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 44—Event notification. Let your home tell you when automation events occur with

your projects.

systems. Most Mac users don’t know these voices exist, let alone that down-

loading additional OS X voices can expand your choices.

Here are the items you will need to put this project into action:

• An Apple Mac computer running OS X 10.7 (Lion) or higher

• A home stereo with standard 3.5mm or RCA audio input jacks

• One of the following:

• A male-to-male stereo miniplug cable to connect the Mac to your home

stereo, or

• A 3.5mm stereo headphone-to-RCA adapter cable if your stereo only

uses standard RCA input jacks, or

• A wireless Bluetooth speaker, such as the Supertooth DISCO1

• A wireless microphone and receiving station, such as the Radio Shack

Wireless Lapel Microphone System2

• A 3.5mm headphone-to-USB adapter to send the wireless mic station’s

audio into the Mac, such as Griffin Technology’s iMic3

1. http://www.supertooth.net/AU/produitmusique.htm

2. http://www.radioshack.com/product/index.jsp?productId=2131022

3. http://store.griffintechnology.com/imic

174 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://www.supertooth.net/AU/produitmusique.htm
http://www.radioshack.com/product/index.jsp?productId=2131022
http://store.griffintechnology.com/imic
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Before we listen to the computer voices, we first need to be able to reproduce

the Mac’s spoken audio on a set of speakers, whether they be attached to the

Mac, connected via a stereo, or transmitted to a wireless Bluetooth speaker.

10.2 Speaker Setup

The speaker being used to amplify the computer’s audio is a key factor in this

project’s success. The speaker needs to be loud enough to be heard from one

or more rooms away and ideally should be heard throughout the house if

possible. Let’s take a look at both wired and wireless approaches.

The quickest way to connect a Mac computer up to a home stereo is by using

a male-to-male 3.5mm stereo headphone to an RCA adapter cable. This cable

will run from the Mac’s headphone jack to the stereo amplifier and/or receiv-

er’s audio input jack. If your home stereo doesn’t support a 3.5mm input

jack, you will need a 3.5mm female-to-RCA-male audio cable. The length of

the cable needs to comfortably run from the computer to the stereo, so take

that into consideration when purchasing the cable from your preferred audio-

video supplier.

If the computer and stereo are separated by several rooms, you will be running

a lot of wire and probably need to drill a few holes in the process. If you don’t

want to operate the computer in the same room as the stereo and don’t like

the idea of fishing wiring through walls to connect the two, consider a wire-

free alternative. If this is your situation, I recommend using the external

Bluetooth speaker option since it offers the most flexibility.

Pairing an external Bluetooth speaker with the Mac is easy. Simply turn on

Bluetooth on the Mac via the Bluetooth System Preference pane. Then power

up the external Bluetooth speaker and set it to pair with your computer. This

is typically done by holding down the power button on the speaker until the

speaker’s Bluetooth indicator light starts flashing. Then click the Set Up New

Device... button on the Mac’s Bluetooth Preference Pane. This should auto-

detect the Bluetooth speaker. In the case of the Supertooth DISCO speaker,

it displays “ST DISCO R58” on my Mac, as shown in Figure 45, Bluetooth

wireless speaker pairing, on page 176.

Select the speaker name. Depending on the Bluetooth speaker you are con-

necting to, it may automatically establish a connection or it may require a

four-digit confirmation code such as 0000 or 1234 to be typed in on the

screen. In the case of the Supertooth DISCO speaker, my Mac automatically

configured the speaker without requiring any confirmation codes.

report erratum • discuss

Speaker Setup • 175

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 45—Bluetooth wireless speaker pairing

If the discovery and configuration went smoothly, you should receive a confir-

mation message on the screen that pairing with the speaker was successful.

Go to the Sound option in System Preferences and select the speaker in the

Output tab. Then use the iTunes music application on your Mac to play back

audio and verify that you can indeed hear the sound reproduced on the paired

speaker. Conclude your pairing confirmation testing by entering the Speech

option in System Preferences and then selecting the Text to Speech tab. Click

the Play button. If you hear the TTS playback on the speaker, your talking

Mac hardware setup is successfully configured. Set the volume on the

speaker and dial up or down the output volume level on the Mac to get the

sound output just right for the audio coverage area you have in mind.

There are trade-offs between these wired and wireless audio configurations.

If you need the convenience of a wire-free audio transmission, the external

Bluetooth speaker option is the way to go. But if you value high fidelity sound

over wireless convenience, a wired connection to a dedicated stereo

amplifier/receiver offers the best sound reproduction to multiple speaker

outputs. If you are fortunate enough to have already prewired the rooms in

your home for stereo sound, the wired computer-to-stereo approach is the

obvious choice.

176 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Why Bluetooth Audio?

Bluetooth wireless audio capabilities are available in most Mac computers. Using it

will give you maximum flexibility when placing the computer and external Bluetooth

speaker in different locations. Rather than running an audio cable from the computer

to a stereo, we can rely on high fidelity wireless Bluetooth audio that can broadcast

up to thirty feet away.

Next we’ll configure the Mac to listen for voice commands and respond with

a high-quality voice response. Then we will write an AppleScript script that

will leverage OS X’s built-in speech recognition server to listen for specific

commands and act on them accordingly.

10.3 Giving Lion a Voice

Before we can talk to a Mac, we must first enable its speech recognition

server. Note that the speech recognition server had been broken on the OS X

10.5 and 10.6 releases and was finally fixed in the 10.7 Lion release. This

once again makes the Mac a viable speech recognition platform.

In order to configure the Mac to use its speech recognition capabilities, click

on the Speech icon in the System Preferences panel, as shown in Figure 46,

Accessing OS X speech settings, on page 178.

Select the Speech Recognition tab and turn on the Speakable Items, as shown

in Figure 47, Turn on speakable items, on page 179.

Read the tips dialog box that is displayed the first time you enable this option

and take heed of the recommendations. Speech recognition algorithms are

not yet powerful enough to effortlessly understand a variety of dialects,

accents, and volume levels, but the technology is getting better all the time.

I find I have to be especially loud and clear when speaking to the Mac, making

an effort to slowly enunciate my commands with almost no background noise.

You may also need to play around with microphone gain and placement from

your mouth as well as acclimate to the cadence for the speech recognizer to

work with the vocabulary we’ll be defining in our script. Note that the Mac

sets the Microphone setting to use the Internal Microphone by default. We

will revisit this setting later when we change this to use the iMic adapter, but

it’s okay to leave the setting as it is for now.

When the Speakable Items option is activated, you will see a round microphone

graphic appear on your computer’s screen. This is the speech recognizer

report erratum • discuss

Giving Lion a Voice • 177

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 46—Accessing OS X speech settings

window. You activate the recognizer by holding down the Escape key on the

keyboard. We will remove this keyboard requirement once we have our talking

home script running and our wireless microphone set up, but for now we’ll

leave it be so that we can more easily debug our script.

Before closing the Speech preference panel, we have one more option to set.

Click on the Text to Speech tab (see Figure 48, Text to Speech settings, on

page 180) and select a System Voice from the drop-down list.

You can preview voices by clicking the Play button. The default voice is Alex.

It’s pretty good, but I prefer the American female voice Samantha. Since the

voice files are quite large, Apple doesn’t ship all of the selections with Lion.

Instead, you have to obtain them by selecting the Customize... System Voice

menu option. Doing so will display the dialog box shown in Figure 49, Lion

voice selections, on page 181, which lists the voices freely available for download

from Apple.

178 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 47—Turn on speakable items.

There are plenty of voices to choose from, and you can preview each one before

downloading them by clicking the Play button. Once you select a voice that

you like, it may take a while to download and configure the selected voice

files on your computer, depending on your Internet connection and Mac CPU

speed. As an example, the Samantha voice file is over 450 megabytes in size.

Once downloaded and installed, you can further tweak the voice playback by

moving the Speaking Rate slider for faster or slower playback. I suggest

keeping it on the normal default for now and modifying it if necessary once

you have the whole wireless mic rig and speaker system working. Speaking

of which, our next task is to get the wireless mic hooked up and calibrated

for speech recognition.

10.4 Wireless Mic Calibration

If you’re using a MacBook Pro or iMac computer, you could use the computer’s

internal microphone. It works okay if you are sitting directly in front of the

laptop, but it falters the farther you are from the screen. We need the mobility

report erratum • discuss

Wireless Mic Calibration • 179

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 48—Text to Speech settings

of being able to converse with our home while walking around, watching TV,

making breakfast in the kitchen, or cleaning the living room. This will be

accomplished by using a wireless microphone.

For a wireless microphone to reliably work with the Mac’s speech recognizer,

it needs to be a decent quality wireless mic with clear audio signal transmis-

sion. A mic that delivers crackling, hissing audio won’t work too well because

the speech recognizer will struggle to distinguish between the signal and the

noise. If this is a project you’re planning on fruitfully using for a long time,

invest in a quality wireless microphone, like those used by professional singers.

These can cost over two hundred dollars or more, depending on the features

and broadcast range, but they make a big difference in consistent delivery of

clear audio. For those interested in testing the waters before committing that

kind of money in audio hardware, the Radio Shack Wireless Lapel Microphone

System is a more economical compromise.

Plug the Griffin iMic adapter into one of the Mac computer’s available USB

ports, then plug the output of the wireless base station into the iMic’s miniplug

inputs. Make sure that the mic input is selected on the iMic, turn on the

180 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 49—Lion voice selections

wireless mic and power up the base station. Select the iMic USB audio system

in the Speech Recognition System Preferences pane and click the Calibrate...

button. This will bring up the microphone calibration window (Figure 50,

Microphone calibration, on page 182). Speak into the microphone while moving

the slider left or right to keep the audio level in the green bar area.

Try moving around the room wearing the active wireless mic and verify that

the calibration bars still stay within the green while speaking.

We have one more task to complete before we can start coding. Let’s hook up

the speakers for audio output.

10.5 Programming a Talking Lion

Writing good speech synthesis and recognition software is hard. That’s why

we’re going to take advantage of all the hard work Apple speech software

engineers have poured into OS X. The engine can be accessed a variety of

ways, via the preferred method of Objective-C to Perl, Python, Ruby, and

other scripting language hooks. But the easiest way I have found to tinker

and quickly modify and test on the fly is via AppleScript.

report erratum • discuss

Programming a Talking Lion • 181

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 50—Microphone calibration

I’ll be the first to admit that I am not a big fan of AppleScript. Its attempt to

turn script writing into a natural English sentence structure works only on

a superficial level. It breaks down pretty quickly for any intermediate developer

fluent in more elegant scripting languages like Ruby or Python. Even simple

tasks like string manipulation turn out to be a real pain in AppleScript. That

said, AppleScript trumps these other languages when it comes to effortless

automation integration with other AppleScript-aware OS X applications.

Bundled programs like iTunes, Mail, Safari, and Finder are fully scriptable,

as are a number of third-party OS X programs like Skype, Microsoft Office,

and the like. In the case of this project, Apple’s speech recognition server is

also highly scriptable, and that’s what we’re going to call upon in this project

to make the magic work.

While AppleScript can be written using any text editor, it should come as no

surprise that it’s best hosted within the AppleScript Editor application. This

can be found in the Applications/Utilities folder. Launching the AppleScript

editor for the first time will open a blank, two-pane coding window. The top

half of the window is used to enter code, while the bottom consists of three

tabs for monitoring events, replies, and results of the executing script. The

182 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

editor aids in writing script by color coding AppleScript syntax, but it doesn’t

offer IDE-friendlier features like code completion or on-the-fly compiling.

Fortunately, scripts are typically short, so these omissions are not crippling.

AppleScript has its own vocabulary, keywords, and idioms. Learning Apple-

Script isn’t difficult, but it can get maddening at times when you have to

massage the syntax just right to make the script do what you intended. For

example, parsing a string for an email address is easy in most scripting lan-

guages. Not so in AppleScript. Partly due to its historical ties and partly due

to the way AppleScript expects you to work, it’s complicated. So with regard

to the code we will write for this project, you will just have to trust me and

try to follow along. If you find AppleScript to your liking or want to see what

else it can do to further extend the code for this project, review Apple’s online

documentation for more information.4

Before writing the script, let’s think about what we want it to do. First, we

want it to respond to a select group of spoken words or phrases and act on

those commands accordingly. What commands should we elicit? For starters,

how about having the script hit the URLs we exposed in some of our networked

projects, like the Web-Enabled Light Switch or the Android Door Lock? While

we’re at it, let’s make use of some of the bundled OS X applications like Mail

and iTunes to check and read our unread email and play music we want to

hear. Let’s also ask our house what time it is.

We need to initialize the SpeechRecognitionServer application and populate the set

of words or phrases that we want it to listen to. Using a series of if/then

statements, we can react to those recognized commands accordingly. For

example, if we ask the computer to play music, we will call upon the iTunes

application to take an inventory of music tracks in its library, sort these by

artist and album, populate these as more words/phrases to interpret, and

have the text-to-speech engine ask us which artist and album we want to

listen to. Similarly, we can have our unread email read to us via a check mail

command. Doing so will launch the Mail application, poll your preconfigured

Mail accounts for new mail, check the inbox for unread messages, and perform

a text-to-speech reading of unread sender names and message titles.

Now let’s take a closer look at the details of the script’s execution. Here’s the

full script in its entirety. Most of the syntax should be easy to follow, even if

you are not familiar with AppleScript.

4. http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/

AppleScriptLangGuide/introduction/ASLR_intro.html

report erratum • discuss

Programming a Talking Lion • 183

http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Download GivingYourHomeAVoice/osx-voice-automation.scpt

with timeout of 2629743 seconds
set exitApp to "no"
repeat while exitApp is "no"

① tell application "SpeechRecognitionServer"
activate
try

set voiceResponse to listen for {"light on", "light off", ¬
"unlock door", "play music", "pause music", ¬
"unpause music", "stop music", "next track", ¬
"raise volume", "lower volume", ¬
"previous track", "check email", "time", "make a call", ¬
"hang up", "quit app"} giving up after 2629743

on error -- time out
return

end try
end tell

if voiceResponse is "light on" then②

-- open URL to turn on Light Switch
open location "http://192.168.1.100:3344/command/on"
say "The light is now on."

else if voiceResponse is "light off" then
-- open URL to turn off Light Switch
open location "http://192.168.1.100:3344/command/off"
say "The light is now off."

else if voiceResponse is "unlock door" then
-- open URL to unlock Android Door Lock
open location "http://192.168.1.230:8000"
say "Unlocking the door."

else if voiceResponse is "play music" then③

tell application "iTunes"
set musicList to {"Cancel"} as list
set myList to (get artist of every track ¬

of playlist 1) as list
repeat with myItem in myList

if musicList does not contain myItem then
set musicList to musicList & myItem

end if
end repeat

end tell

say "Which artist would you like to listen to?"
tell application "SpeechRecognitionServer"

set theArtistListing to ¬
(listen for musicList with prompt musicList)

end tell

184 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://media.pragprog.com/titles/mrhome/code/GivingYourHomeAVoice/osx-voice-automation.scpt
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

if theArtistListing is not "Cancel" then
say "Which of " & theArtistListing & ¬

"'s albums would you like to listen to?"
tell application "iTunes"

tell source "Library"
tell library playlist 1
set uniqueAlbumList to {}
set albumList to album of tracks ¬

where artist is equal to theArtistListing

repeat until albumList = {}
if uniqueAlbumList does not contain ¬
(first item of albumList) then
copy (first item of albumList) to end of ¬

uniqueAlbumList
end if
set albumList to rest of albumList

end repeat

set theUniqueAlbumList to {"Cancel"} & uniqueAlbumList
tell application "SpeechRecognitionServer"
set theAlbum to (listen for the theUniqueAlbumList ¬

with prompt theUniqueAlbumList)
end tell

end tell
if theAlbum is not "Cancel" then
if not ((name of playlists) contains "Current Album") then
set theAlbumPlaylist to ¬

make new playlist with properties {name:"Current Album"}
else

set theAlbumPlaylist to playlist "Current Album"
delete every track of theAlbumPlaylist

end if
tell library playlist 1 to duplicate ¬

(every track whose album is theAlbum) to theAlbumPlaylist
play theAlbumPlaylist

else
say "Canceling music selection"

end if
end tell

end tell
else
say "Canceling music selection"

end if

④ else if voiceResponse is "pause music" or ¬
voiceResponse is "unpause music" then
tell application "iTunes"
playpause

end tell

report erratum • discuss

Programming a Talking Lion • 185

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

else if voiceResponse is "stop music" then
tell application "iTunes"

stop
end tell

else if voiceResponse is "next track" then
tell application "iTunes"

next track
end tell

else if voiceResponse is "previous track" then
tell application "iTunes"

previous track
end tell

-- Raise and lower volume routines courtesy of HexMonkey's post:
-- http://forums.macrumors.com/showthread.php?t=144749
else if voiceResponse is "raise volume" then⑤

set currentVolume to output volume of (get volume settings)
set scaledVolume to round (currentVolume / (100 / 16))
set scaledVolume to scaledVolume + 1
if (scaledVolume > 16) then

set scaledVolume to 16
end if
set newVolume to round (scaledVolume / 16 * 100)
set volume output volume newVolume

else if voiceResponse is "lower volume" then
set currentVolume to output volume of (get volume settings)
set scaledVolume to round (currentVolume / (100 / 16))
set scaledVolume to scaledVolume - 1
if (scaledVolume < 0) then

set scaledVolume to 0
end if
set newVolume to round (scaledVolume / 16 * 100)
set volume output volume newVolume

else if voiceResponse is "check email" then⑥

tell application "Mail"
activate
check for new mail
set unreadEmailCount to unread count in inbox
if unreadEmailCount is equal to 0 then

say "You have no unread messages in your Inbox."
else if unreadEmailCount is equal to 1 then

say "You have 1 unread message in your Inbox."
else

say "You have " & unreadEmailCount & ¬
" unread messages in your Inbox."

end if

186 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

if unreadEmailCount is greater than 0 then
say "Would you like me to read your unread email to you?"
tell application "SpeechRecognitionServer"
activate
set voiceResponse to listen for {"yes", "no"} ¬

giving up after 1 * minutes
end tell
if voiceResponse is "yes" then
set allMessages to every message in inbox
repeat with aMessage in allMessages
if read status of aMessage is false then

set theSender to sender of aMessage
set {savedDelimiters, AppleScript's text item delimiters} ¬

to {AppleScript's text item delimiters, "<"}
set senderName to first text item of theSender
set AppleScript's text item delimiters ¬

to savedDelimiters
say "From " & senderName
say "Subject: " & subject of aMessage
delay 1

end if
end repeat

end if
end if

end tell

else if voiceResponse is "time" then⑦

set current_time to (time string of (current date))
set {savedDelimiters, AppleScript's text item delimiters} to ¬

{AppleScript's text item delimiters, ":"}
set hours to first text item of current_time
set minutes to the second text item of current_time
set AMPM to third text item of current_time
set AMPM to text 3 thru 5 of AMPM
set AppleScript's text item delimiters to savedDelimiters
say "The time is " & hours & " " & minutes & AMPM
--else if voiceResponse is "make a call" then⑧

-- tell application "Skype"
-- -- A Skype API Security dialog will pop up first
-- -- time accessing Skype with this script.
-- -- Select "Allow this application to use Skype" for ¬
-- -- uninterrupted Skype API access.
-- activate
-- -- replace echo123 Skype Call Testing Service ID with ¬
-- -- phone number or your contact's Skype ID
-- send command "CALL echo123" script name ¬
-- "Place Skype Call"
-- end tell
-- else if voiceResponse is "hang up" then
-- tell application "Skype"

report erratum • discuss

Programming a Talking Lion • 187

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

-- quit
-- end tell

else if voiceResponse is "quit app" then⑨

set exitApp to "yes"
say "Listening deactivated. Exiting application."
delay 1
do shell script "killall SpeechRecognitionServer"

end if
end repeat

end timeout

① The first thing we should do to keep the script running continuously is

wrap the script in two loops. The first is a with timeout... end with loop to pre-

vent the script from timing out. The timeout duration must be set in

seconds. In this case, we’re going to run the script for one month (there

are roughly 2.6 million seconds in an average month).

The second loop is a while loop that repeats until the exitApp variable is set

to yes via the “Quit app” voiceResponse, as shown toward the end of the code

listing.

Next, initialize the Speech Recognizer Server and pass it an array of the

key words and phrases via the listen for method. We will keep the recognizer

alive for a month so it can await incoming commands without having to

restart the script when the listening duration times out. You can extend

this month-long duration by changing the giving up value.

② If the incoming phrase is interpreted as lights on, we will open the default

browser and direct it to the on URL of our web-enabled light switch. “Lights

off” will request the off URL from that project. We can also perform the

same open location URL call for the Android door lock project too.

③ Besides triggering URL calls via voice, we can also interact with Apple-

Script-able OS X applications like iTunes and Mail. In this code snippet,

we do the following:

1. Open iTunes.

2. Create an empty list array.

3. Populate that array with every song track in our local iTunes library,

eliminating duplicate titles along the way.

4. Extract the artist names from the array of tracks.

5. As long as there is at least one artist in the array, pass the array of

artist names to the speech recognition server via its listen for method.

188 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

6. Ask the user to pick an artist to listen to. If the user responds with

the name of an artist in the library, populate the speech recognizer

with the name(s) of that artist’s album(s). Users can also exit the play
music routine at this point by saying the word “Cancel.”

7. If an artist has more than one album in the library, use the same type

of procedure as the artist selection process to select the desired artist’s

album. Otherwise, start playback of the album immediately.

④ The pause/unpause and stop music commands, along with the next and

previous track commands, call iTunes’s similarly named methods.

⑤ The raise and lower volume commands capture the Mac’s current output

volume and raises or lowers it equivalent to a single press of the up and

down volume keys on the Mac’s keyboard. These commands are especially

helpful when having to raise or lower music playback volume hands-free.

⑥ This portion of the script expects that you have already configured your

desired email accounts to work with OS X’s built-in Mail application. In

the Mail snippet, we do this:

1. Open Mail.

2. Poll all configured mail servers for new, unread email messages.

3. Count the number of unread mail messages in the unified inbox and

speak that amount.

4. If there are any unread messages, ask users if they would like to have

their unread messages read to them.

5. If the user answer is yes, create an array of the unread messages and

read the name and the subject line of the email. Otherwise, exit the

routine.

⑦ This routine extracts the current time from AppleScript’s current date routine.

From there, we do this:

1. Assign the current time to the string current_time.

2. Use AppleScript’s savedDelimiters function to split the current_time string

via the : delimiter. This breaks the string apart into its constituent

hour and minute values. The remainder of the string contains the

a.m. or p.m. designation.

3. Assign these time values to their appropriate variables (hours, minutes,

AMPM) and speak them accordingly.

report erratum • discuss

Programming a Talking Lion • 189

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

⑧ Uncomment these lines (remove the double-dash [–] characters used to

indicate a comment in AppleScript) if you have the Mac Skype client

installed and you want to place a hands-free call. Configure the account

name of your choice in the echo123 Skype call testing service account.

⑨ This command exits the script and ensures that the speech recognition

server process is indeed killed by issuing a killall SpeechRecognitionServer
command from the shell.

Once you have entered the script in the AppleScript editor, save it and click

the Compile button on the editor’s toolbar. If the script contains any typos

or errors, it will fail to compile. Clean up whatever problems occur and make

sure you attain a clean compile. Also make sure that your calibrated wireless

headset is turned on and the input audio levels are properly set. Turn up the

volume on your external speakers loud enough to hear the responses and

music playback. Then click the Run button and get ready to talk.

10.6 Conversing with Your Home

The culminating moment of glory has arrived. Speak the command “Time,”

and listen for your computer to respond with the current time. Ask it to “play

music,” and your computer should respond with “Which artist would you like

to listen to?” Respond in kind with an artist in the computer’s iTunes library

and select the album from which to start playing. Say “Stop music” when

you’re done listening to the music.

Query for unread email in your inbox by asking your computer to “check

mail.” Check the computer screen to verify that the computer responds with

the correct count and reads the correct email sender and subject lines.

If you have your Android door lock or web-enabled light switch running, say

“Unlock door” or “Light on” to watch your door unlock or light turn on accord-

ingly. You now have your own voice-activated home. Pretty cool!

Try issuing commands from different locations. Move around the room, then

try from other rooms. See how far your wireless microphone’s signal will reach

before it starts to cut out and your commands are no longer being acknowl-

edged. Keep these boundaries in mind when interacting with your computer.

To give the script more permanence, convert it to an executable. Place its icon

in the OS X desktop dock and control-click its icon to select Open at Login

from the Options section of the pop-up menu. This will automatically launch

the script each time you log into your Mac’s desktop, ready to listen to your

predetermined voice commands.

190 • Chapter 10. Giving Your Home a Voice

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Continue to tweak the script and add any new phrases and functionality that

best suit your environment. Network-enable the Curtain Automation project

and instruct your home to “open drapes” or add a weather option that pulls

down the weather forecast from the National Oceanic and Atmospheric

Administration’s weather.gov website and reads it aloud. Consider adding

more features as suggested in the Next Steps section.

10.7 Next Steps

Kudos to you for completing the last project in the book. As you have seen,

enabling voice recognition is a remarkably trivial matter and while the tech-

nology isn’t perfect, it’s still pretty wild that we have the ability to control our

home in ways that were considered science fiction twenty years ago.

Take this higher-level automation skill further by pursuing the following

enhancements:

• Expand the spoken email routine to include saying the timestamp and

message body. Add the ability to delete a message or reply to an email

with prepared templates (ex: “Reply yes”).

• Duplicate the script’s iTunes artist/album lookup array functionality for

the Skype client so that you can place hands-free calling to anyone on

your Skype contact list. After saying “Make a call,” the script will populate

a listen for array with the contact names in your active Skype account. Like

the artist name response, reply with the name of the contact you want to

call and the script will automate Skype to do so.

• Add Text to Speech extensions to the Tweeting Bird Feeder and Package

Delivery Detector Python scripts that speak status updates when events

like bird landings or package deliveries are detected. This can be done

via an Open Script Architecture (OSA) shell command.5

• Bring speech recognition to other computing platforms besides Apple

OS X by converting the script to an Android application by calling upon

Android’s RecognizerIntent intent or Microsoft’s Speech API for the Windows

platform.6

5. http://developer.apple.com/library/mac/#documentation/Darwin/Reference/Man-

Pages/man1/osascript.1.html

6. http://developer.android.com/resources/articles/speech-input.html or http://msdn.mi-

crosoft.com/en-us/library/ee125663%28VS.85%29.aspx, respectively.

report erratum • discuss

Next Steps • 191

http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://developer.android.com/resources/articles/speech-input.html
http://msdn.microsoft.com/en-us/library/ee125663%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/ee125663%28VS.85%29.aspx
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Part III

Predictions

CHAPTER 11

Future Designs

The majority of this book has focused on real home automation projects that

you can build inexpensively today. This chapter takes a look at the exciting,

rapid evolution of microcontrollers, smartphones, and computers and then

forecasts what’s on the horizon for these technologies.

We will take a look at the near-term prospects of Arduinos, Androids, and

computer operating systems and then extrapolate these developments out

roughly a decade to see how these products will help form the foundation of

high-tech residential living in the year 2025. Looking back at how sophisticated

mobile technology has become over the last ten years, the ideas in this future

setting may not be as farfetched as they sound. In fact, most of the proposed

scenarios could be implemented today, with the projects you learned about

in this book helping to point the way. But first, let’s take a look at what’s

coming up in the next year or so.

11.1 Living in the Near

The open hardware movement is rapidly gaining momentum, and more

businesses and services are expanding or being created as a result. The

established technologies like Arduino and Android are not standing still either.

Both of these platforms had major version upgrades just as this book was

finishing its production.

This section talks about what changes are in store with these near-term

technology innovations and how these new releases will impact anyone

choosing to use these as the technologies of choice when constructing the

projects in this book.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Arduino 1.0

Just as the final pages in this book were written, the Arduino team announced

the impending release of Arduino version 1.0. A number of substantial changes

have been made in this version that will certainly create legacy code night-

mares. This was a bold move by the Arduino team given the considerable

amount of user-generated libraries, code samples, documentation, books,

and videos made using earlier Arduino releases. As a consequence, this book

is no different. Once Arduino 1.0 is widely adopted, the project and library

dependencies will almost certainly need to be rewritten to support the changes.

Most notable of these changes include the following:

• Sketch file name extensions have been changed from .pde to .ino. This was

done to avoid confusion with Processing sketches that also use the same

.pde extension.

• The Arduino Ethernet library will natively support DNS and DHCP. This

will make IP address assignments vastly easier.

• The String class has been optimized so that it requires fewer onboard

resources and can do more with less.

• The Serial class contains more parsing functions to search for data and

to quickly read multiple bytes into a buffer. This may also create timing

issues when using legacy code since such asynchronous operations were

not available or accounted for in most sketches preceding the Arduino

1.0 release.

• Other bundled libraries like those for using the SD card reader have also

been upgraded to make it easier to write sophisticated sketches without

having to worry so much about the underlying code such sketches rely

upon.

• Cosmetic changes have been made to the IDE. New icons, color schemes,

and indicators like compilation progress bars have been added to modern-

ize the IDE and make it easier to locate and interact with the user interface

elements.

• Several other key library class and function names (such as the Wired

library) have changed along with their return types and implementations.

Library authors will be busy in the months ahead as they port their con-

tributions to support these lower-level modifications.

196 • Chapter 11. Future Designs

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

For more details about these changes, read the entry on this topic posted on

the Arduino blog.1 Fortunately, the Arduino IDE is self-contained and portable

enough to install several different versions on your computer. You will be able

to continue to use the previous releases of the IDE when sketch dependencies

have not yet been upgraded to support the latest improvements. As the new

version becomes more widely adopted over the next year or so, more of the

popular user libraries will be converted and supported. As such, future edi-

tions of this book intend to provide code compatible with the new and the old

IDE releases.

Android@Home

At the 2011 Google IO conference, the Android Open Accessory API and

Development Kit (ADK) was officially unveiled. The intent of this initiative was

to provide Android API-level access to low-cost microcontrollers, sensors, and

actuators. Conference attendees were given custom versions of the Arduino

Mega board populated with basic sensors that could be polled from an Android

device like the Google Nexus phone.2 Several configuration scenarios were

posited at the conference using this technology combination, one of which

was dubbed Android@Home. Examples that controlled wireless lighting,

entertainment systems, and exercise equipment were demonstrated, and

more third-party solutions are expected to be announced at Google IO 2012.

The ADK is really what drives Google@Home, and at its heart it is a hardware

specification that attempts to standardize communication across devices. The

Android OS can then react to these messages accordingly. The expectation

is that as hardware becomes more commoditized, the Android OS will be

embedded into more devices beyond just phones. Google hopes that this will

revolutionize the home automation market by having enough electronic appli-

ance manufacturers adopt the specification and allow these devices to talk

to one another.

Unfortunately, having seen this scenario play out with other home automation

standardization attempts, I don’t think there has been enough momentum

behind the Google@Home initiative outside of Google that shows much inter-

est…yet. Many are taking a wait-and-see approach before investing much

attention. But even if Android@Home doesn’t have white-hot adoption, its

impact on the home automation space will no doubt spur Google’s competitors,

namely Apple and Microsoft, to take a closer look at this market opportunity.

The most likely initial point of entry for these companies will be the television.

1. http://arduino.cc/blog/2011/10/04/arduino-1-0/

2. http://www.adafruit.com/products/191

report erratum • discuss

Living in the Near • 197

http://arduino.cc/blog/2011/10/04/arduino-1-0/
http://www.adafruit.com/products/191
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

The Apple Home Button

With the introduction of Apple’s Siri in the iPhone 4S, Apple has constructed

a meta-interface on top of information searching, one that does not rely entirely

on a web browser to view query results. For search providers like Google and

Microsoft, this is a game changer, since those company’s revenue models are

derived by interleaving relevant advertising with search results. In certain

scenarios, Siri’s vocal output filters these text-based results to form a conver-

sation with the user rather than a database dump, obviating the need for a

slurry of ads to be displayed. While it’s technically possible that Apple may

someday incorporate advertising in Siri’s conversation, the near-term Siri

experience is expected to be ad free. If you had the choice between typing in

a query and receiving a blob of links and ads in return versus asking your

TV for information and having it respond with a clear, direct answer, which

technology would you use?

Apple, like Google and Microsoft, also designed a computer that connects to

a television and allows streaming music and video content to be played back

on the TV. Hopeful rumors abound that Apple will release a next generation

version of their Apple TV device that could incorporate Siri technology for

voice remote control. It isn’t hard to imagine asking your TV to display the

local weather forecast, play album tracks by your favorite artists, perform

speech-to-text dictation email responses and, yes, even reach out to other

devices in the home (predominantly iPhones and iPads) that synchronize via

iCloud and participate in the conversation. Google and Microsoft won’t be

sitting still either, and it’s possible that their voice recognition and huge data

sets of aggregated information will beat Apple to the spoken command

automation party.

It should also come as no surprise if engineers at Apple have been looking

for ways to more tightly couple their platform into the home. With Google’s

Android@Home intentions and Microsoft’s Kinect experiments, Apple’s home

consumer cards have yet to be shown. But when they are, Apple’s approach

will undoubtedly receive significant attention and developer support.

11.2 The Long View

While all of this automation designed around making our home lives easier

is truly awesome, the one key dependency to making it all work is electricity.

But you can imagine the demands placed on our planet’s resources if everyone

had the luxury of fully automated homes. Hopefully the next generation of

entrepreneurs will do for energy collection and distribution what my generation

198 • Chapter 11. Future Designs

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

did for computers and global communications. Smart grids, sustainable energy

sources, and respect for the environment will be just as important as the

inexpensive sensors, standard protocols, and ubiquitous secure wireless

communication that automation products of the future will need to support.

Assuming the energy problem is accounted for, the likelihood of low-power

sensors and hardware messaging systems will mushroom. How many com-

puters, monitors, clocks, radios, phones, tablets, and entertainment consoles

do you have plugged into your home’s power outlets? Forty years ago, besides

lighting and refrigeration, there might have been one or two TVs, an LP

turntable, a few radios, and maybe an electric clock. Forty years from now,

it’s possible that there will be half a dozen electronic devices networked in

every room and in constant chatter with their peers. Centralized services will

monitor messages for events and reacting accordingly. So what will this look

like?

The Home Is the Computer

Imagine taking the projects in this book and expanding them in various ways

for every room in your home. Automation is everywhere and the air is busy

with messages being sent to your server for processing. Perhaps this server

is a virtual private server in the cloud, or maybe the message bus is being

managed by a third-party provider. Your home will be able to immediately

inform you of any alerts and will also be able to sense your presence and react

accordingly. Image and voice recognition systems will know who you are and

orient the home’s services to your preferences. You will live in a sensor-filled

environment and it will be just as natural and effortless as tweeting from your

phone is today. The data collected will be analyzed and refined to fit your

lifestyle. Your home will be capable of predicting your lifestyle activities based

on external factors like the season and time of day, local weather, package

deliveries, type of visitors, duration of presence, preferred mode and style of

digital entertainment, and the frequency and filtering of alerts.

The Embedded Mattress

Electronic components are getting less expensive by the day. Considering

how much computing power there is in a thirty-dollar Arduino board compared

to the cost of the same level of computing ten years ago, it’s not too difficult

to imagine how even more computing capacity will be available for even less

expense in the future. Combine these microcontrollers with inexpensive

embedded sensors, and the home will be abuzz with information interaction.

When you leave for the day, your home will power down to sleep mode, ensur-

ing that gas and electricity consumption are kept to an operating minimum.

report erratum • discuss

The Long View • 199

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

When you nod off to sleep, pressure sensors in your bed will know if you had

a restful or restless night and accommodate the alarm in the morning. Each

door could be wired so your house will know your traversal patterns and

preemptively turn on lights and appliances accordingly.

For example, the house will know you wake up for work every morning at six

o’clock, take a shower, and head to the kitchen for a cup of coffee thirty

minutes later. After triggering your alarm clock, the shower will turn on and

the water will be warm just as you enter. While you’re getting dressed, coffee

will be freshly brewing and ready by the time you reach the kitchen. The

house will also know that you sleep in until eight o’clock on Saturdays and

don’t follow the same routine, so it will toggle to manual mode for the daily

waking ritual. Not surprisingly, this scenario can be programmed and imple-

mented today with the tools and technologies we used in the book’s projects.

But when the electronics get cheap enough, the cloud gets robust enough,

and the interfaces are standardized enough, a greater number of people will

come to expect this type of scenario.

11.3 The Home of the Future

Like any passionate technologist, I enjoy imagining futuristic visions of

plausible technology scenarios. Yet the pragmatic developer in me knows

such visions don’t happen overnight. They require incremental steps in a

number of related areas. But at some point, all those incremental services,

discoveries, and technologies converge and create inflection points that forever

alter the course of history.

I have been fortunate to participate in three major technology revolutions in

my lifetime. The first was the introduction and rapid evolution of the personal

computer in the 1980s. The second was the supernova expansion of the

Internet in the 1990s, and the third was the mobile device revolution in the

first decade of the twenty-first century.

Technologies are converging. Cloud computing, palm-sized Internet-connected

supercomputers, inexpensive network-aware embedded sensors, autonomous

controls, cheap storage, and faster compute cycles will lead us to another

amazing era of information processing. With all these technology forces and

developments meshing together, here is my prediction of a typical domestic

day for a technically savvy homeowner (Figure 51, A Smarter Home, circa

2025, on page 201).

After coming home from a long day at work, Mel’s phone activates the keyless

doorway lock that automatically logs the event and video capture to her secure

200 • Chapter 11. Future Designs

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Figure 51—A Smarter Home, circa 2025

cloud bank. Based on GPS coordinates, Mel’s phone had already called ahead

when she was twenty minutes away to tell the HVAC system to turn on the

air conditioning. By the time of her arrival, the home was as cool as when

she left in the morning.

A parcel is waiting for her on the steps; it’s a box of paper towels that was

automatically reordered when the towel dispenser detected it was running

low. With the delivery confirmation message, the dispenser’s counter was

automatically reset and won’t need to reorder again for a while.

She’s carrying a bag of groceries that her refrigerator suggested that she bring

home. The sensors in the fridge detected that the tomatoes had only another

day before they would start to turn, so Mel decided to pick up some additional

ingredients for making spaghetti sauce.

As she prepares the meal by filling up a pot of water to boil for the spaghetti,

the faucet sensors ensure that the purity of the water is contaminant-free. If

an anomaly is detected, a message is sent to the city’s water reclamation

department automatically reporting the issue.

report erratum • discuss

The Home of the Future • 201

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

After dinner, Mel decides to exercise with a ride on her stationary biking

simulator. She usually meets a friend on the prairie road course around this

time of day, so she dons her motion-tracking 3D headset, queues up her

favorite playlist and starts peddling. The headset has a heart rate, blood

pressure, and perspiration monitor built into the strap, and these values are

translucently overlaid on top of the pastoral scene of rolling hills of swaying

wheat. After a few minutes, her friend’s avatar rides close by and pings her,

asking if Mel is available for conversation. Mel acknowledges and the two

keep each other company as they log half an hour on their bikes. At the end

of the ride, each are credited with 200 energy points as a result of their

peddling power feeding electricity back into the grid.

With twilight approaching, photosensors lining the window panes prepare

the home’s lighting for the evening by drawing the curtains and activating

motion detectors in the rooms. Gone are the days of flipping on and off light

switches, unintentionally leaving lights on throughout the home even when

no one is in the room. There is an override option when guests are visiting,

but most of the time the motion detectors do their job well by turning on and

off the lights based on presence. This effective lighting strategy has contributed

to even more monthly energy credits as a result.

As she begins to settle in for the evening, Mel asks her television to list new

videos that her friends have suggested. Voice control has become the norm

with content consumption devices and has steadily improved with filtering

algorithms and speaker identification. While the videos play back sequentially,

overlays of her online status, message queues, weather forecast, and upcoming

schedules can be called upon just by asking the television for that information.

The weather dictates what her outfit will be the next day. A warm front is

moving in, so Mel’s closet rack automatically queues up via RFID sensors

embedded in the clothing hangers a section of appropriate outfits to choose

from. It’s going to be a bright, sunny day.

I hope you enjoyed that projection of the future. For those who prefer to invent

the future instead of waiting around for it to arrive, the technologies to build

such a scenario exist today. With the right mix of cost-effective technology,

easy implementation, and effective sales, marketing, and timing, someone is

going to bring elements of this future scenario to life and forever change the

way people interact with their homes. That person could be you!

202 • Chapter 11. Future Designs

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

CHAPTER 12

More Project Ideas

Now that you have a solid footing on which to climb, you can take your home

automation design and construction experience to new heights by building

your own projects. This brief concluding chapter offers a quick survey of

other ideas to consider using equipment you have already worked with.

If you assembled all the projects in this book, you already have most of the

hardware required to build the ideas presented in this chapter. You can also

take the code from these projects and have these new project suggestions up

and running with just a few tweaks. Let’s take a look at some more ways you

can program your home.

12.1 Clutter Detector

Do you have a spouse, kids, or a partner who just can’t seem to keep an area

free of clutter and debris no matter how often you think it gets cleaned up?

Somehow that empty spot attracts newspapers, junk mail, empty boxes,

crumpled clothing, packing material, and whatever else happens to be pseudo-

magnetized to that spot? If so, enlist the help of your newfound electronics

experience by constructing a detector using an infrared distance sensor.1

Point the sensor at the empty space and measure the “clean area” reading.

As clutter piles up, the distance detected by the sensor will be reduced. Have

this trigger an email to your clutter-collecting cohabitants that they need to

remove their clutter collection from the detection area. Be as aggressive as

you want to on email notification frequency. And when the clutter has been

removed, you can even send an email message from your home thanking the

offender(s) for cleaning up the mess.

1. http://www.adafruit.com/products/164

report erratum • discuss

http://www.adafruit.com/products/164
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

12.2 Electricity Usage Monitor

Using the same concept behind Adafruit’s Tweet-A-Watt,2 hook into a Kill-A-

Watt electricity flow detector to measure the energy usage of an electrical

appliance such as a refrigerator or television.

Some electrical utility companies offer their customers energy tracking by

month. Access this on the Web and calculate the percentage of total electric-

ity that monitored appliance consumes on a monthly basis. Then, based on

your electricity bill for that month, calculate the monthly, daily, and hourly

cost associated with operating that appliance. You may be surprised just how

much money you’re spending on watching a couple hours of TV or how much

that freezer that you bought on sale really ends up costing over its lifetime.

12.3 Electric Scarecrow

Have critter problems been plaguing your vegetable garden? Shoo those

problems away using a smarter approach. Go beyond the picturesque but

functionally pointless static scarecrow by bringing it to life with the help of

a motion detector and a couple of heavy-duty servos. When that pesky rabbit

comes by for its evening grazing on your plants, the scarecrow’s sensor will

bring it to life, moving its arms and legs in a convincing way to frighten the

rabbit away. Have your scarecrow email a photo of its animal detection activ-

ities with the help of an Android camera phone seated inside the scarecrow’s

head.

12.4 Entertainment System Remote

Extend the Rails server from the Web-Enabled Light Switch project to transmit

IR commands through a serial port connected to an Arduino that is attached

to an IR LED.3 Build the Arduino-assisted IR transmitter using Maik Schmidt’s

instructions in Arduino: A Quick Start Guide [Sch11]. Place IR LEDs in front

of all your IR-controlled entertainment center devices, such as televisions

and audio receivers. Create a friendly user interface for your native iOS or

Android client, or combine the IR user interface with other project client

interfaces, such as the one we made for the Android Door Lock.

2. http://www.adafruit.com/products/143

3. http://www.adafruit.com/products/387

204 • Chapter 12. More Project Ideas

report erratum • discuss

http://www.adafruit.com/products/143
http://www.adafruit.com/products/387
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

12.5 Home Sleep Timer

Have any family members who fall asleep while watching TV? Forgot to power

down that power-hungry quad-core desktop computer in the study? Did

someone forget to turn off the lights in the basement? If so, write a script that

turns off lights, appliances, and computers at a time when everyone should

be sleeping. If the computer supports Wake-On-LAN (WOL), send it a shutdown

packet from your script. Turn off lights via X10 heyu commands. Turn off TVs

and stereos via the entertainment system remote. Turn off anything else

plugged into a PowerSwitch Tail. Pocket some money, reduce your carbon

footprint, and save the planet while you sleep.

12.6 Humidity Sensor-Driven Sprinkler System

Hook up a DHT22 temperature and humidity sensor to an Arduino attached

to a stepper motor that drives a water spigot attached to a garden hose con-

nected to a lawn sprinkler.4 When the temperature is high and the humidity

is low for a prolonged duration, turn on the stepper motor crank valve on the

water spigot. Let the water run for ten minutes and then shut off the water

valve. Calculate the volume of water used based on the duration it was run-

ning. Do this by first calibrating the number of seconds it takes to fill up a

liter (or gallon, for the metric system-challenged) at the valve setting estab-

lished by the stepper motor crank.

For example, if it takes thirty seconds to fill up a liter container, running the

sprinkler for ten minutes will consume 20 liters (2 liters per minute times 10

minutes) of water each time you run the sprinkler. Log this amount with the

help of an XBee/PC setup (from Chapter 5, Tweeting Bird Feeder, on page

59) over the duration of the month, and determine from your water bill the

percentage of water used on your lawn. Once this metric is calibrated, you

can calculate lawn sprinkling costs in real time and literally watch your

money flow out of the spigot.

12.7 Networked Smoke Detectors

Smoke detectors save lives and can help minimize property damage, but what

happens when the alarm goes off when nobody is home? If you know what

you’re doing, you can hook directly into the onboard electronics of the smoke

detector to measure the voltage change when the alarm goes off, but doing

4. https://www.adafruit.com/products/385

report erratum • discuss

Home Sleep Timer • 205

https://www.adafruit.com/products/385
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

so will probably void your detector’s warranty. It could also put the lives of

those who depend on its life-saving functionality at risk if the device is

improperly modified. Instead of soldering directly onto the smoke detector’s

electronics, obtain an Electret microphone breakout board and use your

Arduino and XBee skills to hook up, calibrate, and monitor the microphone

input for the audio levels attained when the smoke detector’s alarm is

sounding.5 When an alarm is detected, have your XBee message-receiving PC

relay you the message via an urgent email. You could even modify the Android

server we used in Chapter 9, Android Door Lock, on page 143, to take a photo

of the area being monitored by the smoke detector and attach it to the out-

bound message.

You could even link this alert to perform further actions, such as auto-dialing

neighbors with a recorded message asking them to investigate the fire on your

behalf and call you (just in case you never received the email). And if you’re

really confident in your system’s sensing integrity, you could go so far as to

auto-call the fire department if you don’t deactivate the alarm within a

predetermined duration of time (though keep in mind that improper and/or

nonemergency alerts could end up costing you, since many jurisdictions have

penalties for false calls). Regardless of what enhancements you add, the fact

remains that your smoke detector can extend its alert distance worldwide

thanks to the Internet-enabled communication pathway you can devise for

it.

12.8 Proximity Garage Door Opener

As you approach your garage with your GPS-enabled smartphone, the phone

triggers a request to open the garage door. This relays to Arduino-XBee

hardware attached to your garage door’s RF-transmitting garage door opener,

which in turn transmits the request to the automatic garage door receiver

and opens the door.

Sans the GPS feature, opening a garage door from a smartphone like the

Android or iOS device is a very popular DIY project, and a number of videos

doing this have been posted on YouTube. Since your garage is a fixed location,

the GPS values for latitude/longitude/elevation will remain static. By extend-

ing the Rails server we wrote in Chapter 7, Web-Enabled Light Switch, on page

107, writing the smartphone application that extends the toggle functionality

of the garage door opening and closing based on your location shouldn’t be

too difficult.

5. http://www.sparkfun.com/products/9964

206 • Chapter 12. More Project Ideas

report erratum • discuss

http://www.sparkfun.com/products/9964
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

12.9 Smart HVAC Controller

Manage your air conditioning and heating needs with smarter temperature

control in your home. You can dial your thermostat up or down based on a

specific time frame or operate it from a remote location. Ben Heckendorn,

host of The Ben Heck Show, posted an episode on home automation featuring

this project.6 I like his approach because he didn’t mess with the hardwired

internals of the thermostat. It also uses parts that we already had from

Chapter 8, Curtain Automation, on page 127, making it an easy project to

assemble and implement.

12.10 Smart Mailbox

This is another popular DIY home automation project that has numerous

write-ups and video posts around the Web. Simply reuse the hardware we

constructed in Chapter 5, Tweeting Bird Feeder, on page 59, and tweet or

email when the light coming from the open mailbox lid hits the photocell. You

could also have the speech playback-enabled Android device from Chapter

10, Giving Your Home a Voice, on page 173, audibly announce the delivery, as

in “You’ve Got Mail!”

12.11 Smart Lighting

Go beyond the project presented in Chapter 7, Web-Enabled Light Switch, on

page 107, to incorporate a managed lighting system throughout the home.

Incorporate motion detectors to activate and deactivate lights in basements,

bathrooms, and bedrooms. Record when lights turn on and off, and correlate

the monthly operational costs associated with lighting your home based on

your total electricity bill.

12.12 Solar and Wind Power Monitors

For those fortunate enough to have portions of their electrical power consump-

tion supplied by residential solar and wind energy collectors, you can use the

Arduino/XBee/PC combination to measure both the energy generated by

these devices and the status of the battery’s charge being stored in the batter-

ies that capture and store the output of these reusable energy devices.

6. http://revision3.com/tbhs/homeauto

report erratum • discuss

Smart HVAC Controller • 207

http://revision3.com/tbhs/homeauto
http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Send email alerts when the battery’s charge is below a certain threshold.

Capture the stats over time and map them to understand the month-to-month

fluctuations that can be used to predict energy output for years to come.

If you happen to build these or any other home automation projects that

you’re proud of, keep the projects alive by sharing them with other readers—

post your ideas, discoveries, and outcomes to the Programming Your Home

book forum. See you online!

208 • Chapter 12. More Project Ideas

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Part IV

Appendices

APPENDIX 1

Installing Arduino Libraries

One of the biggest advantages of the Arduino product line is that it is built

on an open hardware platform. This means that anyone is able to contribute

to the hardware and software libraries. These libraries can be easily incorpo-

rated into Arduino sketches to extend the Arduino’s functionality and, in

many cases, make it easier to write the sketches yourself.

Several projects in this book benefitted from such community contributions.

Unfortunately, installing new Arduino libraries isn’t as automatic as running

a setup script. Library files, which are often distributed in a compressed .zip

format, need to be uncompressed and placed into the Arduino’s libraries folder.

The location of this folder varies depending on which operating system the

Arduino IDE is running on.

A1.1 Apple OSX

1. Locate the Arduino icon, typically found in the main /Applications folder.

2. Hold down the Control key on the keyboard and click the Arduino icon,

usually located in the /Applications folder. This will pop up a context-

sensitive menu.

3. Select the Show Package Contents option from the pop-up menu. This

will open a folder containing the Arduino application resources.

4. Navigate to the Contents/Resources/Java/libraries folder.

5. Copy the new library files into this libraries folder.

If you prefer, you can also place library files in your home directory’s Docu-

ments/Arduino/libraries folder.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

A1.2 Linux

1. Locate where you uncompressed the Arduino application files.

2. Navigate to the libraries folder.

3. Copy the new library files into this libraries folder.

A1.3 Windows

1. Locate where you unzipped the Arduino application files.

2. Navigate to the libraries folder.

3. Copy the new library files into this libraries folder.

After you have copied the library files into their appropriate location, restart

the Arduino IDE so that the library can be referenced in your sketches.

For example, to install the CapSense library from the Tweeting Bird Feeder

project on a computer running Apple OS X, unzip the CapSense.zip file. Then

place the unzipped CapSense folder into the /Applications/Arduino/Contents/Resources/Ja-
va/libraries folder. Restart the Arduino IDE. Create a new Arduino sketch. Type

the following sketch into the Arduino IDE window:

#include <CapSense.h>;
void setup() {}
void loop() {}

Click the Verify button on the Arduino IDE toolbar. If the CapSense library was

copied to the correct location, this three-line sketch should compile without

errors.

212 • Appendix 1. Installing Arduino Libraries

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

APPENDIX 2

Bibliography

[Bur10] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development

Platform, Third Edition. The Pragmatic Bookshelf, Raleigh, NC and Dallas,

TX, 2010.

[CADH09] David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesøy, Bryan

Helmkamp, and Dan North. The RSpec Book. The Pragmatic Bookshelf,

Raleigh, NC and Dallas, TX, 2009.

[Fal10] Robert Faludi. Building Wireless Sensor Networks. O’Reilly & Associates,

Inc, Sebastopol, CA, 2010.

[LA03] Mark Lutz and David Ascher. Learning Python. O’Reilly & Associates, Inc,

Sebastopol, CA, 2003.

[RC11] Ben Rady and Rod Coffin. Continuous Testing: with Ruby, Rails, and

JavaScript. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX, 2011.

[Sch11] Maik Schmidt. Arduino: A Quick Start Guide. The Pragmatic Bookshelf,

Raleigh, NC and Dallas, TX, 2011.

[TFH09] David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby: The

Pragmatic Programmer’s Guide. The Pragmatic Bookshelf, Raleigh, NC and

Dallas, TX, Third Edition, 2009.

report erratum • discuss

http://pragprog.com/titles/mrhome/errata/add
http://forums.pragprog.com/forums/mrhome

Index

A
Adafruit Industries, 12

Arduino Ethernet, 26
Arduino Mega board, 197
force sensitive resistors,

88
infrared distance sensors,

203
motor shield, 127, 130,

132
music and sound add-on

pack, 46
servo motors, 46
temperature and humidi-

ty sensors, 205
Tweet-A-Watt, 204
XBee adapter kits, 17,

61, 70

Android Door Lock
Android application per-

missions, 165, 169
Android client, 166–170
Android web server, 154–

160, 165
description, 146–148
email notification, 163–

165
hardware assembly, 148–

149
image capture, 160–163
installation, 171
IOIO board programming,

150–151
parts, 146
PowerSwitch Tail pro-

gramming, 152–154
security concerns, 167,

172
setting static IP, 156

testing, 170
wiring, 149

Android OS
Android SDK, 14–15,

109, 118
Android test framework,

9
application permissions,

122, 165, 169
application signature,

124
creating AVD, 118
and home automation, 4,

14
intents, 156
vs. iOS, xv

Android smartphones,
sources and costs, 13, 145

Android Virtual Devices
(AVDs), 118

Android@Home
Google Open Accessory

Protocol, 144
Open Accessory Develop-

ment Kit (ADK), 14,
109, 197

Apple iOS, xv

Apple OS X, see Mac OS X

AppleScript, 182–190

Arduino accessories
Ethernet shield, 26, 36–

39
motor shield, 129–130,

132–133
MP3 shield, 48
wave shield, 46, 48, 50–

55

Arduino boards
Arduino 1.0, 196

Arduino Ethernet, 26
Arduino Mega board, 197
configuration and check-

out, 28
sources and costs, 12
wire diagraming, 7

Arduino programming
Arduino IDE, 15, 28, 32,

38
Arduino: A Quick Start

Guide, 28
capacitive sensors, 64–66
compiling and uploading,

32
conditional blocks, 32
defined constants, 29
email notifications, 36–40
end of lines, 32
Ethernet reference li-

brary, 38
Ethernet shield, 36–39
flex sensors, 28–33
force sensitive resistors,

92–94
installing libraries, 211–

212
LED pin configuration, 29
motor shield, 132–133
photocells, 67–69
PIR motion sensors, 54
Serial Monitor Window,

32
serial port setup, 30
servo motors, 52–55
stepper motors, 132,

134–138
testing code, 9
virtual emulators, 16
wave shield, 52–55
XBee radios, 72–75

Audacity, 51

B
bird feeder, see Tweeting Bird

Feeder

Bluetooth wireless audio, 177

C
capacitive sensors, 63–66

more project ideas, 84

CEBus standard, 4

clutter detector, 203

Curtain Automation
Arduino programming,

134–138
description, 130–131
hardware assembly, 131–

133
installation, 139–141
motor shield program-

ming, 132–133
parts, 129
pulley wheels, 129
stepper motor calibration,

140
testing, 138

D
DIY resources

Google Groups, xvii
Instructables, xvii
Ladyada, 48, 51, 67, 70,

130
Makezine, xvii

E
Eclipse IDE, 118

Electric Guard Dog
Arduino programming,

52–55
description, 47
hardware assembly, 48–

50
installation, 56
parts, 47
sound clips for, 49
testing, 55–56

electric scarecrow, 204

Electric Sheep board, 147

electricity usage monitor, 204

Elektor Electronic Toolbox, 8

email notifications
Arduino programming,

36–40
authentication, 36
PHP web mailer, 34–35

using Android phone,
163–165

using Gmail, 95, 98, 102

Emulare, 16

entertainment system remote,
204

Ethernet shield
Arduino Ethernet, 26
Arduino IDE reference li-

brary, 38, 196
Arduino programming,

36–39
assembly and wiring, 36
DNS and DHCP func-

tions, 38, 196

Exosite, xvi

F
FedEx tracking APIs, 97–98

flex sensors
Arduino programming,

28–33
more project ideas, 42–43
wiring, 26–28

force sensitive resistors, 90
Arduino programming,

92–94
more project ideas, 105
sources, 88
wiring, 91

Freemind, 7

Fritzing, 7

G
gcc compiler, 112

Git, 32

Giving Your Home a Voice
AppleScript program-

ming, 182–190
description, 173
enabling Mac speech

recognition, 177–179
speaker setup, 175–177
testing, 190–191
wireless microphone cali-

bration, 179–182

Gmail, 95, 98, 102

Google@Home, 197

H
hardware components

costs, 12–13
sources, 48, 61, 84

headphone-to-USB adapter,
174

Heyu utility, 107
driving from Ruby, 116
installing, 112
issuing X10 commands,

113

home automation technology
Android OS, 4
Android@Home, 197
CEBus standard, 4
coming developments,

195–198
DIY solutions, 5
Insteon standard, 4
programming languages,

17
visions of the future,

199–202
X10 system, 4

home security, see Electric
Guard Dog

home sleep timer, 205

humidity sensor-driven
sprinkler system, 205

I
iCircuit, 8

iThoughts HD, 8

IEEE 802.15.4 wireless speci-
fication, 16

infrared distance sensors,
203

infrared transmitter, 204

Inkscape, 8

Insteon standard, 4

Instructables, xvii

IOIO board, xv
ADK support for, 14
cost, 13
how it works, 144
programming, 150–151
wiring, 148–150

L
lighting, see Web-Enabled

Light Switch

M
Mac OS X

AppleScript, 182–190
Bluetooth speaker pair-

ing, 175
installing Arduino li-

braries, 211
Mac developer tools, 112

216 • Index

Rails, 114
speech recognition server,

177–179

Maker Shed, 48, 61

Makezine, xvii

microphone breakout boards,
205

microphone calibration, 179–
182

microphones, wireless, 174,
179–181

miniDraw, 8

motion sensors, see PIR (Pas-
sive InfraRed) motion sen-
sors

motor shield, 129
Arduino programming,

132–133
assembly, 130
sources, 127
wiring, 132

MP3 shield, 48

multimeters, 9

N
networked smoke detectors,

205

O
online resources

Google Groups, xvii
Instructables, xvii
Ladyada, 48, 51, 67, 70,

130
Makezine, xvii

P
Pachube, xvi

Package Delivery Detector
Arduino programming,

92–94
database, 95–97
description, 90
hardware assembly, 91
installation, 104
parts, 89
testing, 103
tracking number valida-

tion, 95–103
wiring, 91

photocells
Arduino programming,

67–69
more project ideas, 84–

85, 207
wiring, 68, 134

PIR (Passive InfraRed) motion
sensors

Arduino programming, 54
how they work, 51
more project ideas, 57,

105, 142, 172, 204,
207

wiring, 49–50

PowerSwitch Tail, 146
programming, 152–154
sources, 145
wiring, 148

pressure sensors, see force
sensitive resistors

programming languages, 17

project planning, 5–8
components and costs,

12–17
documentation, 9
safety, 18
workbench setup, 6–7

Prolific PL-2303, 111

proximity garage door opener,
206

pulley wheels, 129

R
Rails

installation and setup,
114, 116

server, 116, 121

RSpec, 9

Ruby on Rails, 114

S
safety considerations, 18

serial port monitoring, 71

serial-to-USB adapter, 111

servo motors
Arduino programming,

52–55
sources, 46
timing adjustment, 55
wiring, 49

Sinatra, 125

sketching, 7–8

Skype hands-free calling, 191

smart HVAC controller, 207

smart lighting, 207

smart mailbox, 207

SOAP (Simple Object Access
Protocol), 97

solar power, 61, 83, 207

soldering, 6, 9

Solio, 61, 83

Sparkfun, 12
Electret microphone

breakout boards, 205
Electric Sheep, 147
flex sensors, 24
force sensitive resistors,

88
IOIO board, xv, 13–14,

144–145, 150–151
MP3 shield, 48
WiFly Shield, 70

SQLite, 77–78, 96

SQLite Manager, 79

stepper motors
Arduino programming,

132, 134–138
calibrating, 140
how they work, 131
more project ideas, 142,

205, 207
wiring, 131–132

Sunforce Products, 84

T
temperature sensors

more project ideas, 205
wiring, 134

Test-Driven Development
(TDD), 9

testing, 9

Tweet-A-Watt, 204

Tweeting Bird Feeder
Arduino programming,

64–69
database, 77–78
description, 62
hardware assembly, 63,

65, 67, 70–72
installation, 83–84
parts, 61
perch sensor, 63–66
posting to Twitter, 80–82
seed sensor, 67
solar power, 83
Twitter API credentials,

79–80
wiring, 72
XBee radios, 70–75

Twitter interface, 79–82

Index • 217

U
UPS tracking APIs, 97–98

V
version control software, 32

Virtual Breadboard, 16

VirtualBox, 108

visions of the future, 199–202

voice commands, see Giving
Your Home a Voice

W
Water Level Notifier

Arduino programming,
28–33

description, 26
Ethernet shield program-

ming, 36–39
hardware assembly, 26–

28, 36
installation, 40–41
parts, 25
sending email message,

39–40
testing, 33, 40
web mailer, 34–35

wave shield
Arduino programming,

52–55

assembly and wiring, 48,
50

sound clips for, 50
sources, 46
testing, 48

web access to sensors, xvi

web servers
choices, 35
securing notification

messages, 36

Web-Enabled Light Switch
Android application per-

missions, 122
Android application signa-

ture, 124
Android client, 117–124
description, 110
parts, 109
Rails server, 116, 121
testing, 121–124
web client, 114–117
X10 hookup, 111–113

WEBrick server, 116

WiFly Shield, 70

Windows
Arduino emulators, 16
installing Arduino li-

braries, 212
VirtualBox, 108

workbench setup, 6–7

X
X10 system, 4

connecting to computer,
111–113

control modules, 109,
111

Heyu utility, 107
how it works, 110
more project ideas, 125,

205
potential problems, 114,

124

XBee radios
Arduino programming,

72–75
cost, 12
hardware assembly, 70
how they work, 16–17
more project ideas, 84–

85, 142, 205–206
pairing, 70
serial port monitoring, 71
sources, 61

Y
Yaler, xvi

218 • Index

Embedded C code and Android
Whether you’re working in C on an embedded platform or writing for Android phones and

tablets, we’ve got what you need.

Still chasing bugs and watching your code deteriorate?

Think TDD is only for desktop or web apps? It’s not:

TDD is for you, the embedded C programmer. TDD

helps you prevent defects and build software with a

long useful life. This is the first book to teach the hows

and whys of TDD for C programmers.

James W. Grenning

(384 pages) ISBN: 9781934356623. $34.95

http://pragprog.com/titles/jgade

Google’s Android is shaking up the mobile market in

a big way. With Android, you can write programs that

run on any compatible cell phone or tablet in the world.

It’s a mobile platform you can’t afford not to learn, and

this book gets you started. Hello, Android has been

updated to Android 2.3.3, with revised code throughout

to reflect this updated version. That means that the

book is now up-to-date for tablets such as the Kindle

Fire. All examples were tested for forwards and back-

wards compatibility on a variety of devices and versions

of Android from 1.5 to 4.0. (Note: the Kindle Fire does

not support home screen widgets or wallpaper, so those

samples couldn’t be tested on the Fire.)

Ed Burnette

(280 pages) ISBN: 9781934356562. $34.95

http://pragprog.com/titles/eband3

http://pragprog.com/titles/jgade
http://pragprog.com/titles/eband3

Arduino and The Command Line
Getting into the Arduino? Start here. And see how to make the most of command-line appli-

cations written in Ruby.

Arduino is an open-source platform that makes DIY

electronics projects easier than ever. Readers with no

electronics experience can create their first gadgets

within a few minutes. This book is up-to-date for the

new Arduino Uno board, with step-by-step instructions

for building a universal remote, a motion-sensing game

controller, and many other fun, useful projects.

Maik Schmidt

(296 pages) ISBN: 9781934356661. $35

http://pragprog.com/titles/msard

Speak directly to your system. With its simple com-

mands, flags, and parameters, a well-formed command-

line application is the quickest way to automate a

backup, a build, or a deployment and simplify your

life.

David Bryant Copeland

(200 pages) ISBN: 9781934356913. $33

http://pragprog.com/titles/dccar

http://pragprog.com/titles/msard
http://pragprog.com/titles/dccar

Your Career, Your Blog
It’s your career, learn how to make the most of it, whether you’re just starting out in the

field or ready to launch your latest, best blog ever.

It’s your first day on the new job. You’ve got the pro-

gramming chops, you’re up on the latest tech, you’re

sitting at your workstation… now what? New Program-

mer’s Survival Manual gives your career the jolt it needs

to get going: essential industry skills to help you apply

your raw programming talent and make a name for

yourself. It’s a no-holds-barred look at what really goes

on in the office—and how to not only survive, but thrive

in your first job and beyond.

Josh Carter

(256 pages) ISBN: 9781934356814. $29

http://pragprog.com/titles/jcdeg

Technical Blogging is the first book to specifically teach

programmers, technical people, and technically-orient-

ed entrepreneurs how to become successful bloggers.

There is no magic to successful blogging; with this

book you’ll learn the techniques to attract and keep a

large audience of loyal, regular readers and leverage

this popularity to achieve your goals.

Antonio Cangiano

(304 pages) ISBN: 9781934356883. $33

http://pragprog.com/titles/actb

http://pragprog.com/titles/jcdeg
http://pragprog.com/titles/actb

Pragmatic Guide Series
Get started quickly, with a minimum of fuss and hand-holding. The Pragmatic Guide Series

features convenient, task-oriented two-page spreads. You’ll find what you need fast, and

get on with your work

Need to learn how to wrap your head around Git, but

don’t need a lot of hand holding? Grab this book if

you’re new to Git, not to the world of programming.

Git tasks displayed on two-page spreads provide all

the context you need, without the extra fluff.

NEW: Part of the new Pragmatic Guide series

Travis Swicegood

(160 pages) ISBN: 9781934356722. $25

http://pragprog.com/titles/pg_git

JavaScript is everywhere. It’s a key component of to-

day’s Web—a powerful, dynamic language with a rich

ecosystem of professional-grade development tools,

infrastructures, frameworks, and toolkits. This book

will get you up to speed quickly and painlessly with

the 35 key JavaScript tasks you need to know.

NEW: Part of the new Pragmatic Guide series

Christophe Porteneuve

(160 pages) ISBN: 9781934356678. $25

http://pragprog.com/titles/pg_js

http://pragprog.com/titles/pg_git
http://pragprog.com/titles/pg_js

New Languages & New Databases
Want to be a better programmer? Each new programming language you learn teaches you

something new about computing. And these aren’t the databases you’re used to using. Come

see what you’re missing.

You should learn a programming language every year,

as recommended by The Pragmatic Programmer. But

if one per year is good, how about Seven Languages in

Seven Weeks? In this book you’ll get a hands-on tour

of Clojure, Haskell, Io, Prolog, Scala, Erlang, and Ruby.

Whether or not your favorite language is on that list,

you’ll broaden your perspective of programming by

examining these languages side-by-side. You’ll learn

something new from each, and best of all, you’ll learn

how to learn a language quickly.

Bruce A. Tate

(328 pages) ISBN: 9781934356593. $34.95

http://pragprog.com/titles/btlang

Data is getting bigger and more complex by the day,

and so are your choices in handling it. From traditional

RDBMS to newer NoSQL approaches, Seven Databases

in Seven Weeks takes you on a tour of some of the

hottest open source databases today. In the tradition

of Bruce A. Tate’s Seven Languages in Seven Weeks,

this book goes beyond a basic tutorial to explore the

essential concepts at the core of each technology.

Eric Redmond and Jim Wilson

(330 pages) ISBN: 9781934356920. $35

http://pragprog.com/titles/rwdata

http://pragprog.com/titles/btlang
http://pragprog.com/titles/rwdata

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

http://pragprog.com/titles/mrhome
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you'd like to have a paper copy of the book. It's available

for purchase at our store: http://pragprog.com/titles/mrhome

Contact Us
http://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://pragprog.com/write-for-usWrite for Us:

+1 800-699-7764Or Call:

http://pragprog.com/titles/mrhome
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
http://pragprog.com/titles/mrhome
http://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://pragprog.com/write-for-us

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Who Should Read This Book
	What's in This Book
	Arduinos, Androids, and iPhones, Oh My!
	Code Examples and Conventions
	Online Resources

	Part I—Preparations
	1. Getting Started
	What Is Home Automation?
	Commercial Solutions
	DIY Solutions
	Justifying the Investment
	Setting Up Your Workbench
	Sketching Out Your Ideas
	Writing, Wiring, and Testing
	Documenting Your Work

	2. Requirements
	Knowing the Hardware
	Knowing the Software
	Be Safe, Have Fun!

	Part II—Projects
	3. Water Level Notifier
	What You Need
	Building the Solution
	Hooking It Up
	Sketching Things Out
	Writing the Web Mailer
	Adding an Ethernet Shield
	All Together Now
	Next Steps

	4. Electric Guard Dog
	What You Need
	Building the Solution
	Dog Assembly
	Dog Training
	Testing It Out
	Unleashing the Dog
	Next Steps

	5. Tweeting Bird Feeder
	What You Need
	Building the Solution
	The Perch Sensor
	The Seed Sensor
	Going Wireless
	Tweeting with Python
	Putting It All Together
	Next Steps

	6. Package Delivery Detector
	What You Need
	Building the Solution
	Hardware Assembly
	Writing the Code
	The Package Delivery Sketch
	Testing the Delivery Sketch
	The Delivery Processor
	Creating the Delivery Database
	Installing the Package Dependencies
	Writing the Script
	Testing the Delivery Processor
	Setting It Up
	Next Steps

	7. Web-Enabled Light Switch
	What You Need
	Building the Solution
	Hooking It Up
	Writing the Code for the Web Client
	Testing Out the Web Client
	Writing the Code for the Android Client
	Testing Out the Android Client
	Next Steps

	8. Curtain Automation
	What You Need
	Building the Solution
	Using the Stepper Motor
	Programming the Stepper Motor
	Adding the Sensors
	Writing the Sketch
	Installing the Hardware
	Next Steps

	9. Android Door Lock
	What You Need
	Building the Solution
	Controlling the Android Door Lock
	Writing the Android Server
	Writing the Android Client
	Test and Install
	Next Steps

	10. Giving Your Home a Voice
	What You Need
	Speaker Setup
	Giving Lion a Voice
	Wireless Mic Calibration
	Programming a Talking Lion
	Conversing with Your Home
	Next Steps

	Part III—Predictions
	11. Future Designs
	Living in the Near
	The Long View
	The Home of the Future

	12. More Project Ideas
	Clutter Detector
	Electricity Usage Monitor
	Electric Scarecrow
	Entertainment System Remote
	Home Sleep Timer
	Humidity Sensor-Driven Sprinkler System
	Networked Smoke Detectors
	Proximity Garage Door Opener
	Smart HVAC Controller
	Smart Mailbox
	Smart Lighting
	Solar and Wind Power Monitors

	Part IV—Appendices
	A1. Installing Arduino Libraries
	Apple OSX
	Linux
	Windows

	A2. Bibliography

	Index

